10,823 research outputs found

    Temperature dependent photoemission on 1T-TiSe2: Interpretation within the exciton condensate phase model

    Get PDF
    The charge density wave phase transition of 1T-TiSe2 is studied by angle-resolved photoemission over a wide temperature range. An important chemical potential shift which strongly evolves with temperature is evidenced. In the framework of the exciton condensate phase, the detailed temperature dependence of the associated order parameter is extracted. Having a mean-field-like behaviour at low temperature, it exhibits a non-zero value above the transition, interpreted as the signature of strong excitonic fluctuations, reminiscent of the pseudo-gap phase of high temperature superconductors. Integrated intensity around the Fermi level is found to display a trend similar to the measured resistivity and is discussed within the model.Comment: 8 pages, 6 figure

    The interview as narrative ethnography : seeking and shaping connections in qualitative research.

    Get PDF
    Acts of counter-subjectification in qualitative research are always present but are often submerged in accounts that seek to locate the power of subjectification entirely with the researcher. This is particularly so when talking to people about sensitive issues. Based on an interview-based study of infertility and reproductive disruption among British Pakistanis in Northeast England, we explore how we, as researchers, sought and were drawn into various kinds of connections with the study participants; connections that were actively and performatively constructed through time. The three of us that conducted interviews are all female academics with Ph.Ds in anthropology, but thereafter our backgrounds, life stories and experiences diverge in ways that intersected with those of our informants in complex and shifting ways. We describe how these processes shaped the production of narrative accounts and consider some of the associated analytical and ethical implications

    Nanometer Scale Dielectric Fluctuations at the Glass Transition

    Full text link
    Using non-contact scanning probe microscopy (SPM) techniques, dielectric properties were studied on 50 nanometer length scales in poly-vinyl-acetate (PVAc) films in the vicinity of the glass transition. Low frequency (1/f) noise observed in the measurements, was shown to arise from thermal fluctuations of the electric polarization. Anomalous variations observed in the noise spectrum provide direct evidence for cooperative nano-regions with heterogeneous kinetics. The cooperative length scale was determined. Heterogeneity was long-lived only well below the glass transition for faster than average processes.Comment: 4 pages, 4 embedded PS figures, RevTeX - To appear in Phys. Rev. Let

    Magnetic pair-breaking in superconducting (Ba,K)BiO_3 investigated by magnetotunneling

    Full text link
    The de Gennes and Maki theory of gapless superconductivity for dirty superconductors is used to interpret the tunneling measurements on the strongly type-II high-Tc oxide-superconductor Ba1-xKxBiO3 in high magnetic fields up to 30 Tesla. We show that this theory is applicable at all temperatures and in a wide range of magnetic fields starting from 50 percent of the upper critical field Bc2. In this magnetic field range the measured superconducting density of states (DOS) has the simple energy dependence as predicted by de Gennes from which the temperature dependence of the pair-breaking parameter alpha(T), or Bc2(T), has been obtained. The deduced temperature dependence of Bc2(T) follows the Werthamer-Helfand-Hohenberg prediction for classical type-II superconductors in agreement with our previous direct determination. The amplitudes of the deviations in the DOS depend on the magnetic field via the spatially averaged superconducting order parameter which has a square-root dependence on the magnetic field. Finally, the second Ginzburg-Landau parameter kappa2(T) has been determined from the experimental data.Comment: 11 pages, 5 figure

    Super-Ehlers in Any Dimension

    Full text link
    We classify the enhanced helicity symmetry of the Ehlers group to extended supergravity theories in any dimension. The vanishing character of the pseudo-Riemannian cosets occurring in this analysis is explained in terms of Poincar\'e duality. The latter resides in the nature of regularly embedded quotient subgroups which are non-compact rank preserving.Comment: 1+55 pages; 15 Tables, 6 Figures; v2 : some clarifications added in Sec. 1 and in App.

    Current and Future Advances in Surgical Therapy for Pituitary Adenoma

    Get PDF
    The vital physiological role of the pituitary gland, alongside its proximal critical neurovascular structures means pituitary adenomas cause significant morbidity or mortality. Whilst enormous advancements have been made in the surgical care of pituitary adenomas, treatment failure and recurrence remain challenges. To meet these clinical challenges, there has been an enormous expansion of novel medical technologies (e.g. endoscopy, advanced imaging, artificial intelligence). These innovations have the potential to benefit each step of the patient journey, and ultimately, drive improved outcomes. Earlier and more accurate diagnosis addresses this in part. Analysis of novel patient data sets, such as automated facial analysis or natural language processing of medical records holds potential in achieving an earlier diagnosis. After diagnosis, treatment decision-making and planning will benefit from radiomics and multimodal machine learning models. Surgical safety and effectiveness will be transformed by smart simulation methods for trainees. Next-generation imaging techniques and augmented reality will enhance surgical planning and intraoperative navigation. Similarly, the future armamentarium of pituitary surgeons, including advanced optical devices, smart instruments and surgical robotics, will augment the surgeon's abilities. Intraoperative support to team members will benefit from a surgical data science approach, utilising machine learning analysis of operative videos to improve patient safety and orientate team members to a common workflow. Postoperatively, early detection of individuals at risk of complications and prediction of treatment failure through neural networks of multimodal datasets will support earlier intervention, safer hospital discharge, guide follow-up and adjuvant treatment decisions. Whilst advancements in pituitary surgery hold promise to enhance the quality of care, clinicians must be the gatekeepers of technological translation, ensuring systematic assessment of risk and benefit. In doing so, the synergy between these innovations can be leveraged to drive improved outcomes for patients of the future

    Photocurrent, Rectification, and Magnetic Field Symmetry of Induced Current Through Quantum Dots

    Get PDF
    We report mesoscopic dc current generation in an open chaotic quantum dot with ac excitation applied to one of the shape-defining gates. For excitation frequencies large compared to the inverse dwell time of electrons in the dot (i.e., GHz), we find mesoscopic fluctuations of induced current that are fully asymmetric in the applied perpendicular magnetic field, as predicted by recent theory. Conductance, measured simultaneously, is found to be symmetric in field. In the adiabatic (i.e., MHz) regime, in contrast, the induced current is always symmetric in field, suggesting its origin is mesoscopic rectification.Comment: related papers at http://marcuslab.harvard.ed

    Decoherence in Nearly-Isolated Quantum Dots

    Get PDF
    Decoherence in nearly-isolated GaAs quantum dots is investigated using the change in average Coulomb blockade peak height upon breaking time-reversal symmetry. The normalized change in average peak height approaches the predicted universal value of 1/4 at temperatures well below the single-particle level spacing, but is greatly suppressed for temperature greater than the level spacing, suggesting that inelastic scattering or other dephasing mechanisms dominate in this regime.Comment: Significant revisions to include comparison to theory. Related papers available at http://marcuslab.harvard.ed

    Classical versus Quantum Structure of the Scattering Probability Matrix. Chaotic wave-guides

    Full text link
    The purely classical counterpart of the Scattering Probability Matrix (SPM) Sn,m2\mid S_{n,m}\mid^2 of the quantum scattering matrix SS is defined for 2D quantum waveguides for an arbitrary number of propagating modes MM. We compare the quantum and classical structures of Sn,m2\mid S_{n,m}\mid^2 for a waveguide with generic Hamiltonian chaos. It is shown that even for a moderate number of channels, knowledge of the classical structure of the SPM allows us to predict the global structure of the quantum one and, hence, understand important quantum transport properties of waveguides in terms of purely classical dynamics. It is also shown that the SPM, being an intensity measure, can give additional dynamical information to that obtained by the Poincar\`{e} maps.Comment: 9 pages, 9 figure
    corecore