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Abstract 1 

 2 

The vital physiological role of the pituitary gland, alongside its proximal critical neurovascular structures 3 

means pituitary adenomas cause significant morbidity or mortality. Whilst enormous advancements have 4 

been made in the surgical care of pituitary adenomas, treatment failure and recurrence remain challenges. 5 

To meet these clinical challenges, there has been an enormous expansion of novel medical technologies 6 

(e.g. endoscopy, advanced imaging, artificial intelligence). These innovations have the potential to benefit 7 

each step of the patient journey, and ultimately, drive improved outcomes. 8 

 9 

Earlier and more accurate diagnosis addresses this in part. Analysis of novel patient data sets, such as 10 

automated facial analysis or natural language processing of medical records holds potential in achieving 11 

an earlier diagnosis. After diagnosis, treatment decision-making and planning will benefit from radiomics 12 

and multimodal machine learning models. Surgical safety and effectiveness will be transformed by smart 13 

simulation methods for trainees. Next-generation imaging techniques and augmented reality will enhance 14 

surgical planning and intraoperative navigation. Similarly, the future armamentarium of pituitary 15 

surgeons, including advanced optical devices, smart instruments and surgical robotics, will augment the 16 

surgeon's abilities. Intraoperative support to team members will benefit from a surgical data science 17 

approach, utilising machine learning analysis of operative videos to improve patient safety and orientate 18 

team members to a common workflow. Postoperatively, early detection of individuals at risk of 19 

complications and prediction of treatment failure through neural networks of multimodal datasets will 20 

support earlier intervention, safer hospital discharge, guide follow-up and adjuvant treatment decisions.  21 

 22 

Whilst advancements in pituitary surgery hold promise to enhance the quality of care, clinicians must be 23 

the gatekeepers of technological translation, ensuring systematic assessment of risk and benefit. In doing 24 

so, the synergy between these innovations can be leveraged to drive improved outcomes for patients of 25 

the future.    26 
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1. Background 1 

Pituitary adenomas are among the most common intracranial tumours, with an estimated prevalence of up 2 

to 20% 1, 2. They are slow-growing tumours, with numerous subtypes, broadly divided into non-3 

functioning adenomas and functioning adenomas1, 2. They may present incidentally, through mass effect 4 

(e.g. visual decline) or hormone imbalance (e.g. Cushing’s disease), therefore potentially causing 5 

significant morbidity, quality of life reduction and death if left untreated1-3.  6 

 7 

Management paradigms for pituitary adenomas have been dynamic, with advances in imaging, hormone 8 

therapies and surgical technology impacting guidelines significantly4-6. Recently, numerous practice 9 

variations were adapted in light of the COVID-19 virus, including alterations in interventional 10 

procedures, hormonal therapy and monitoring for safe service delivery to pituitary patients7, 8. The 11 

foundation of this agile and advancing treatment landscape is the collaboration of the multidisciplinary 12 

team caring for patients with pituitary adenomas in concert7, 8. A further example of this is the emergence 13 

of Pituitary Centres of Excellence, consolidating the necessary expertise into fewer, but resultantly higher 14 

volume, specialist centres – to drive improvement in patient outcomes9. This is particularly relevant for 15 

surgical management of these tumours – which has the potential to offer cure, and thus, is the cornerstone 16 

of treatment for the majority of symptomatic pituitary adenomas9-12. Transsphenoidal surgery is 17 

technically demanding with steep learning curves, and thus, service streamlining to maximise surgical 18 

team experience and the resulting creation of dedicated subspecialty training programmes has helped to 19 

improve operative outcomes9-12.  20 

 21 

Despite these organizational and technological improvements in management, many series describe high 22 

rates of treatment failure and recurrence - in functioning adenomas (e.g. up to 20% in Cushing’s Disease) 23 

and non-functioning adenomas (e.g. up to 50% on long term follow-up)13, 14. This is influenced by 24 

significant challenges across the patient pathway from diagnosis to follow-up. To meet these clinical 25 

challenges, there have been numerous advances in the surgical treatment of pituitary adenomas, with the 26 

field benefiting from the recent enormous expansion of novel medical technologies, such as endoscopy, 27 

advanced imaging and artificial intelligence, as well as advances in medical therapies15, 16. These 28 

innovations have the potential to benefit each step of the patient journey, and ultimately, drive improved 29 

outcomes. 30 

 31 

Thus, we aim to explore the scope of existing challenges and potential technological advances in pituitary 32 

adenoma surgery – distilling the patient pathway of the future from 1) diagnosis and preoperative 33 

planning, 2) surgical proficiency and 3) postoperative monitoring.   34 
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2. Advances in Preoperative Care 1 

The pituitary adenoma patient pathway starts with a timely and accurate diagnosis, followed by an 2 

individualized assessment of suitability for treatment. Despite best efforts, there exist numerous barriers 3 

to the multidisciplinary team achieving consistent and universal early diagnosis and treatment. 4 

Technological innovations may hold the solution to many of these barriers, and herein we provide 5 

examples with potential translational value (Table 1).  6 

 7 

2.1 Diagnosis 8 

2.1.1 Challenges 9 

The question of a diagnosis of pituitary adenoma is usually raised by general practitioners, 10 

ophthalmologists, neurologists, and endocrinologists at the first line17. However, the often incidental, 11 

insidious and non-specific presentation of many pituitary adenomas means this is often a challenging 12 

diagnosis to make18. Ultimately, diagnosis requires the unification of a wide array of heterogeneous 13 

manifestations from various clinicians of differing specialist backgrounds to raise suspicion of the 14 

underlying tumour. Thus, diagnostic delay is common, considerable, for example, up to 5-10 years in 15 

acromegaly, and compounded by socio-economic and cultural factors17, 18. During this lag, the tumour 16 

grows, making surgical resection more difficult, particularly if there is invasion into the cavernous sinus, 17 

whilst in functioning tumours systemic complications of hormone imbalance accumulate19. This in turn 18 

can result in irreversible morbidity and socioeconomic decline, further perpetuating issues with healthcare 19 

access and diagnostic delay20. Thus, earlier diagnosis can maximise the chance of cure, and reduce the 20 

socio-economic impact, systemic morbidity and mortality associated with pituitary adenomas. 21 

 22 

2.1.2 Potential solutions 23 

Computer-aided diagnosis allows high throughput analysis of large amounts of data (e.g. symptoms and 24 

signs), detection of otherwise hidden relationships, and is allegedly free of many human cognitive biases 25 

(although subject to an alternative set of biases). These systems are particularly useful in identifying 26 

subtle deviations from the norm, and analysis of image or video data. One example is computer-based 27 

facial analysis, which has the potential to detect subtle and slowly evolving changes in facial morphology 28 

which would otherwise be missed by patients, families and clinicians 21-24. Growth hormone-producing 29 

functioning adenomas causing acromegaly may be an ideal candidate for its use;  facial and acral features 30 

are not only the most common symptoms but are typical and tend to manifest early in the disease course 31 

17, 25-27. 32 

 33 

Such analysis involves the identification of key facial landmarks; analysis of landmark relationships in 34 

space and their changes across time; and association of these changes with disease states27. The software 35 
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has displayed accuracies >80% in recognizing patients with acromegaly and controls – often exceeding 1 

the diagnostic performance of generalist and expert physicians 21, 27-29. Some software particularly 2 

performs well in milder forms of the disease, with more subtle facial changes, again outperforming 3 

clinicians 21. The principal limitation of facial analysis is the manual landmark and feature extraction, 4 

which is labour-intensive and resource-heavy 21. Advances in artificial intelligence, specifically machine 5 

learning (ML) and computer vision (CV), have allowed the automation of facial analysis to a granular 6 

level 23, 27. Similarly, there have been advances in smartphone technology, with high-quality 2D digital 7 

cameras now almost ubiquitous. According to a recent Ofcom report, it is estimated that >80% of UK 8 

households own a smartphone with 71% of those in the lowest socioeconomic bracket still owning a 9 

smartphone 30. The prevalence of these devices has resulted in a massive and growing volume of facial 10 

photographic data. This data, combined with emerging deep learning approaches to image analysis, 11 

provides an opportunity to better characterize the dynamic facial phenotype of acromegaly 27. Its 12 

applications are widespread, for example, in passport renewal or government identity services, where it 13 

could prompt individuals to attend an early medical review based on facial analysis alone. This offers the 14 

potential for widespread population screening (e.g. via smartphone self-photos), particularly in 15 

populations that may have faced disproportionate difficulties in accessing healthcare (e.g. ethnic 16 

minorities). 17 

 18 

Another example of computer-aided diagnosis is the use of natural language processing (NLP), which has 19 

the ability to analyse and integrate large volumes of unstructured text data from various data sources, for 20 

example, GP records, specialist letters and recent discharge summaries. NLP has the potential to 21 

automatically analyse medical documentation for clusters of features associated with undiagnosed 22 

pituitary adenomas, and flag patients for further review and potential earlier diagnosis31, 32. There is a 23 

wide range of accompanying utilities, including economic benefits (e.g. reducing the time and resource 24 

burden of searching individual medical files) and clinical decision support via predicting clinical 25 

outcomes using further integration with ML algorithms33. 26 

 27 

2.2. Surgical Decision Making 28 

2.2.1 Challenge 29 

The natural history of pituitary tumours even within subtypes is considerably variable. The prediction of 30 

the recovery of endocrine and neurological deficits, particular after the intervention, remains difficult. 31 

These factors influence the decision on when or when not to operate, and the optimal timing of this 32 

intervention, often requiring discussion at multidisciplinary meetings. This is particularly the case for the 33 

growing elderly population, who often have a narrower window for intervention owing to accumulating 34 

co-morbidities, and are at higher risk for intervention, but are similarly higher risk for decompensation if 35 
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left without treatment17. Similarly, for medical therapies, for example, dopamine agonists for 1 

prolactinomas, identification of those at risk of medication side effects or those with partial or non-2 

response is important for minimising disease progression and further treatment planning.    3 

 4 

2.2.2 Potential solutions 5 

Similar to computer-aided diagnosis, the risk modelling and prognostication for the individual patient 6 

involves the assimilation of complex multimodal data with a high number of variables34-36. Machine 7 

learning models, particularly neural networks, outperform the traditional statistical methods by leveraging 8 

their ability to utilise complex non-linear relationships between these prediction variables34-36. There is 9 

emerging evidence of the potential benefit and advantage of this technology in the oncology setting – with 10 

some ML models being able to perform risk stratification prior to intervention more accurately than risk 11 

calculators based on traditional statistical models37. Similarly, through the integration of multiple data 12 

types (e.g. histopathological, imaging and electronic health record notes), ML models have been able to 13 

push the boundaries of treatment response prediction, and even discover new features of prognostic 14 

significance38. 15 

 16 

Within pituitary adenoma research, numerous models have been developed to predict complications, 17 

gross total resection and postoperative hyponatraemia39-41. ML prediction of resistance to somatostatin 18 

analogues in acromegaly holds promise in guiding more personalized treatment regimes, relying on an 19 

array of input variables from patient characteristics, imaging findings, biochemistry, and genetic factors42-20 

45. Similarly, radiomics modelling using MRI has identified biomarkers of non-responsiveness to 21 

dopamine agonists to treat prolactinoma, indicating the potential to determine groups for earlier 22 

consideration of surgical resection46. Similarly, radiomics have been demonstrated to aid response to 23 

radiotherapy, offering novel means of selecting and counselling patients47.  24 

 25 

However, many of these studies have been based on unidimensional text/numeric data only or imaging 26 

data only, and the next steps involve the integration of multimodal granular biomarkers into these models. 27 

This dataset would ideally be standardised to establish a core set of preoperative (demographics, co-28 

morbidities, functional status, visual function, endocrine status, histopathology, imaging), operative, and 29 

outcome data. Such standardisation has been achieved through Delphi consensus processes and will be 30 

important for the pooling of data across centres, thus improving ML model performance and 31 

generalisability35, 48, 49. The curation of high-quality and high-volume clinical datasets (e.g. national 32 

registries) will build on this, with concurrent optimisation of electronic medical record systems for 33 

efficient data harvesting35, 48. Finally, model development and reporting must also be standardised, and 34 

guidelines such as the TRIPOD framework (transparent reporting of a multivariable prediction model for 35 
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individual prognosis or diagnosis) must be used for model reproducibility and interpretability50. 1 

Clinicians must lead this data stewardship, ensuring it is representative of their treating population, so that 2 

the resulting models provide an accurate individualised guide to surgical counselling and decision-3 

making36.  4 

 5 

2.3. Surgical Planning 6 

2.3.1 Challenge: 7 

Preparation for pituitary adenoma surgery involves a decision regarding objectives (e.g., total resection, 8 

or debulking to decompress surrounding structures), which informs a surgical plan, which must then be 9 

executed effectively and safely. In certain cases, surgical planning is particularly challenging, for example 10 

in Cushing’s disease, the ACTH -producing microadenoma can sometimes be difficult or impossible to 11 

visualise preoperatively and intraoperatively3. Here, our ability to visualise the tumour is central to an 12 

effective surgical resection that spares surrounding normal tissues. Despite advances in imaging and the 13 

use of auxiliary investigations (e.g. petrosal sinus sampling), failure of a planned lesionectomy is not 14 

uncommon, and progression to more radical surgery (e.g. hemi- or total hypophysectomy) is required, or 15 

medical or radiation therapy if this fails. Furthermore, in cases where lesion visualisation generation of an 16 

operative plan is more straightforward, building the surgical proficiency to remove the lesion is 17 

challenging – owing to the technically demanding, steep learning curve and comparatively low volume 18 

nature of this operation9, 51. For surgeons in training, the pandemic has made the acquisition of the 19 

necessary surgical skills, particularly challenging52. 20 

 21 

2.3.2 Potential solutions: 22 

Tumour visualisation and the surgical strategy that follows will be revolutionised by advances in imaging 23 

technology and our ability to analyse the data this generates. Next-generation advanced imaging may 24 

allow better lesion detection preoperatively. For example, advances in gradient echo sequences and 7-25 

tesla MRI allow higher resolution imaging, and may highlight otherwise undetectable microadenomas53, 26 

54. Similarly, molecular imaging techniques have improved lesion detection by leveraging the metabolic 27 

properties of these tumours, for example, FDG and Methionine PET imaging for Cushing’s disease55-57.  28 

The application of machine learning has demonstrated the ability to augment the data generated by these 29 

imaging modalities, using scene reconstruction to generate thinner slices with noise reduction, improving 30 

target area resolution58, 59. Machine learning can also improve our ability to analyse this data, particular 31 

when a data-driven voxel-by-voxel radiomics approach is used. This is a powerful combination of 32 

technologies, potentially allowing highly accurate detection of even the most challenging microadenomas, 33 

fine delineation of tumour invasiveness, or prediction of intra-tumoral characteristics, for example, 34 

histological subtypes and proliferative index60-62. 35 
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 1 

Once the surgical plan is generated, the precise execution of this, particularly for surgeons in training, is a 2 

formidable beast. Surgical simulation may be a pandemic-proof answer to this problem. The spectrum of 3 

simulators available for pituitary surgery is wide, from low-fidelity physical simulators using bell-4 

peppers, to high-fidelity simulators utilising 3D-printed advanced materials, sometimes to patient-specific 5 

design63, 64. Virtual and augmented reality platforms often require less surgical equipment, can be 6 

dynamic (i.e. incorporate fluid pulsations), and have been generated at a patient-specific level, but are 7 

limited by their general lack of sufficient haptic feedback65, 66. Next-generation models will combine 8 

advanced materials more representative of human tissue with augmented reality and artificial intelligence 9 

for smart simulation – which track and react to surgical actions (e.g. bleed or leak CSF), and 10 

automatically assess surgical skills.  11 

3. Improving Operative Efficiency, Effectiveness & Safety 12 

After work-up, a decision for operative management and the careful planning of tumour resection; comes 13 

the execution of the operation. The operating theatre is aptly named, and represents the coordinated 14 

performance by surgeons (often from multiple specialities), anaesthetists and nurses to achieve a singular 15 

goal, an efficient, effective and safe operation. The Royal College of Surgeons Future of Surgery report 16 

highlights the technologies likely to be most impactful – advanced endoscopes, robotics, augmented 17 

reality, virtual reality, and artificial intelligence – integrated together, as we move into the era of “smart” 18 

operating theatres67. Pituitary surgery is no exception, and there are numerous unmet clinical needs which 19 

may benefit from these innovations. It is worth noting that most introduction of technology is not 20 

systemically assessed, this stands true for many technologies used in endoscopic endonasal surgery 68. 21 

The IDEAL (Idea, Development, Exploration, Assessment and Long-term follow-up) framework provides 22 

a structured pathway to guide the proportionate evaluation of medical devices (based on their risk profile) 23 

and safe stepwise clinical assessment of benefit69-71. Pituitary adenoma surgery has potentially serious 24 

complications, and the introduction of any technology must be carefully assessed using such a framework 25 

and encompass operating team human factors69-71.  26 

 27 

3.1. Navigation 28 

3.1.1 Challenges 29 

Pituitary adenomas are located in an anatomically rich area, with life-sustaining vessels (e.g. carotids) and 30 

other critical structures (e.g. optic nerves) located within a densely packed region. This anatomy is 31 

distorted and sometimes encased by tumours. Intraoperative navigation helps to guide surgeons as to 32 

where the tumour and these structures are. This is most commonly done using image-guided systems 33 

which require specialised scans, and preoperative registration. They provide guidance through the 34 

placement of a probe in the field and cross-referencing the position of this probe with its predicted 35 
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10 

position on the preoperative imaging. Whilst this technology has revolutionised neurosurgery, including 1 

pituitary surgery, particularly during challenging/non-standard cases, it has numerous issues. These 2 

include interruption to the surgical workflow, for example, the need for registration preoperatively and for 3 

intraoperative pauses to use the navigation probe. Additionally, the relative inaccuracy after structures 4 

shift intraoperatively (e.g. after tumour debulking) limits the utility of the navigation as the operation 5 

progresses. 6 

 7 

3.1.2 Potential solutions 8 

Real-time navigation, that is, a system that provides navigation data which is representative of the 9 

surgical field at that moment in time, has been explored using various technologies. Intraoperative MRI is 10 

the most studied modality and integrates with existing image guidance systems to update the imaging on 11 

which it is based, so that intraoperative tissue shifts are accounted for. Newer high-field MR systems are 12 

proposed to particularly highlight the “resectable residuum” – tumour remnants which are removable 13 

safely, without a high risk of damage to surrounding neurovascular structures72. Numerous studies suggest 14 

it resultantly improves the extent of resection and assists in the assessment of neurovascular 15 

decompression, for example, chiasmal decompression in those with visual loss73-75. Similarly, it provides 16 

immediate feedback and quality control to surgeons, which may have benefits in training and flattening of 17 

operative learning curves72, 76. However, intraoperative MRI is resource-heavy, requiring changes to most 18 

of the operating room infrastructure, for example, magnetic shielding and acquiring MR-compatible 19 

equipment72. Furthermore, it significantly interrupts operative workflow, which has to cease for imaging 20 

to take place and thus prolongs both surgical and anaesthetic time72, 77.   21 

 22 

Intraoperative ultrasound addresses some of the disadvantages of intraoperative MRI – being less 23 

disruptive to workflow, less time-consuming, and significantly cheaper. Unlike intraoperative micro-24 

Doppler (used for internal carotid artery identification), it seeks to assist with tumour identification (e.g. 25 

Cushing’s disease microadenoma) and delineation of the tumour gland interface78. Initial issues 26 

highlighted with this technology included large probe size, image resolution quality and operator 27 

dependency. Recent improvements in probe miniaturization and image quality have made this technology 28 

a candidate for translation, with first-in-human studies (IDEAL Stage 1) suggesting the feasibility and 29 

safety of this device79. 30 

 31 

Synergy with augmented reality (AR) platforms is proposed to improve the efficiency of these navigation 32 

systems even further, allowing the integration of information from imaging modalities such as MRI onto 33 

surgical display fields (e.g. endoscopic video) via overlay80-82. These systems do not require probes, or 34 

extra monitors, and build 3D models directly onto the surgical field for more intuitive navigation with 35 
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11 

improved 3-dimensional perception and minimal disruption to operative workflow80-82. Studies suggest 1 

this may help achieve more tumour resection with less collateral neurovascular damage, particularly in 2 

revision cases with distorted anatomical landmarks80-82. For this AR to be real-time, i.e. accounting for 3 

intraoperative tissue shifts, then up-to-date information must be fed into the system via intraoperative 4 

imaging as above, or alternatively, through a combination of preoperative imaging and computer vision-5 

based analysis of intraoperative video (e.g. to detect intraoperative anatomy and events), which is 6 

discussed in detail later. 7 

 8 

3.2 Visualisation 9 

3.2.1 Challenges 10 

Pituitary tumours, housed in an anatomically complex region of the skull base, at the end of a long and 11 

narrow surgical corridor, command rich visualisation during attempts at surgical resection. This is 12 

compounded by the fact that many tumours can distort this anatomy, and be composed of various 13 

consistencies and subcomponents, making distinguishment of tumour margins and extent difficult. 14 

Additionally, many tumours can be too small to distinguish macroscopically from normal tissue72. It is no 15 

surprise that the advent of endoscopy is regarded by many as the greatest technological advance in 16 

modern pituitary surgery, boosting a surgeon’s visualisation intraoperatively, with a wider and more 17 

illuminated field of view. However, most endoscopes are 2D, requiring depth perception estimation by 18 

surgeons through anatomical and motion cues. Similarly, tumour-normal tissue interface is often 19 

challenging, particularly for microadenomas, invasive tumours and revision surgeries.  20 

 21 

3.2.2 Solutions 22 

Augmentation of surgical visualisation technology is a rapidly expanding space, with improvements in 23 

image quality, ergonomics, and synergy with complementary technologies among the principal drivers for 24 

this expansion. High definition (including 4k Ultra HD), like in our living rooms, affords state-of-the-art 25 

image resolution, and in the context of pituitary surgery, allows better discrimination of tumour and gland 26 

with a potential for reducing unexpected tumour residuals (when compared to standard definition 27 

cameras)83, 84. Similarly, 3D endoscopes seek to improve the appreciation of depth through the added 28 

shape and contour information provided to surgeons. Whilst in many endoscopes, this is simulated digital 29 

depth perception rather than the binocular stereopsis of the microscope, numerous studies support its 30 

utility in complex or extended endonasal procedures, although there are notable issues such as motion 31 

sickness for some users and potential disruption to workflow due to the need for increased intraoperative 32 

cleaning of the endoscope (e.g. nasal mucosa blood may block one of the two cameras within the 33 

endoscope required for 3D vision)85, 86. However, the translation of these intraoperative benefits into 34 
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12 

postoperative outcomes, when compared with 2D endoscopy, is less well established and calls for further 1 

systematic, structured assessment (i.e. via the IDEAL pathway)70, 87.  2 

 3 

Nevertheless, these advances have the potential for synergy with complementary innovations. For 4 

example, 3D endoscopy may provide a richer foundation for a more detailed AR overlay in the future. 5 

Similarly, high-definition scopes may potentiate the benefits of intraoperative tracers and dyes. Numerous 6 

chemicals have been tested, such as 5-ALA (no demonstrated benefit in pituitary adenoma tumour 7 

identification), ICG (may help in identifying functional adenomas and internal carotid arteries), OTL38 8 

with near-infrared imaging (may help in identifying non-functioning adenomas with high folate receptor 9 

expression) and fluorescein (may help in identifying functional adenomas)88-90 Innovation in advanced 10 

optical imaging is particularly exciting and builds on the use of these tracers and dyes. For example, 11 

probe-based confocal endomicroscopy, allowing granular tissue characterisation based on microstructural 12 

features, can be used with fluorescein to digital diagnostic biopsies of pituitary tumours91-93. Similarly, 13 

hyperspectral imaging leverages the ability to analyse the chemical composition of tissue to allow more 14 

precise tumour delineation72, 93, 94. 15 

 16 

Recently, there has been increasing awareness of the need to incorporate surgical ergonomics into device 17 

development70, 95. One example is the use of exoscopes, which when compared to microscopes, allow a 18 

more comfortable posture during surgery, with a smaller operating room footprint, both optical and digital 19 

magnification, and the potential for integration with concurrent endoscope use via a split screen. 20 

However, concerns with the resolution (when compared with a microscope) and the width of visualisation 21 

(when compared with the endoscope) have hampered their routine uptake96, 97 Furthermore, ergonomics-22 

orientated robotic devices such as endoscope holders and surgical armrests (for the endoscope holding 23 

arm) have been developed to reduce surgeon’s fatigue and stabilized the surgeon’s hand during pituitary 24 

surgery98. Similarly, robotic endoscopes with adjustable viewing angles (15-90 degrees) have the 25 

potential to allow wider visualization without the need for switching between multiple scopes99.  26 

 27 

3.3 Instruments 28 

3.3.1 Challenges 29 

The narrow nasal surgical corridor which has challenged visualisation also tests the capabilities of 30 

contemporary surgical instruments. Limitations imposed by this restrictive space and the fulcrum effect 31 

results in restricted instrument reach, and co-axial movement of the instruments with challenging surgical 32 

triangulation95. This not only contributes to the steep learning curve of pituitary surgery but also makes 33 

invasive tumours, for example, those extending into the cavernous sinus very difficult to access. More 34 

generally, the forces used in neurosurgery, including pituitary tumour resection, are amongst the lowest of 35 
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all surgical specialities100. Thus, not only must these surgical tools be small enough the pass through the 1 

nasal passage and dextrous enough to provide bimanual control, but they must also be particularly precise 2 

with sensitive haptic feedback so that tool tissue forces are carefully controlled95.  3 

 4 

3.3.2 Potential solutions 5 

Recent advances in engineering and materials have allowed miniaturisation whilst retaining precise 6 

kinematic control, careful force control and haptic feedback in surgical robotics, and will herald a new era 7 

of devices capable of meeting the needs of neurosurgical procedures. Surgical robotics can be categorised 8 

into supervisory controlled (pre-programmed to carry out a specific task), telesurgical (surgeon remotely 9 

controls the robot in real-time) and shared control (surgeon physically controls the robot in real-time). 10 

The most successful robotic system, the Da Vinci (Intuitive Surgical) is a telesurgical system, and despite 11 

efforts to miniaturise the system, the endonasal approach presents too narrow of a corridor for its use, 12 

although some surgeons have used the system transorally101. Numerous other tele-surgical systems are in 13 

development but only preclinically. For example, systems with flexible tubular shafts which fit within the 14 

nose and move using tendon pulley systems with concentric tubes, contorting the tubular shaft and 15 

bringing the end effector (i.e. grasper) to the surgical target with 6 degrees of freedom102. Flexible robots 16 

are the cornerstone of soft robotics, a sub-field which uses bio-inspired design and non-rigid materials to 17 

create systems which are more manoeuvrable (e.g. snake-like) and less damaging to surrounding tissue103. 18 

Conceptually, these devices are well suited to the delicate nature of neurosurgery, but issues with the 19 

controllability and sterilizability of current technology are barriers to development and adoption103.  20 

 21 

More recently, there has been an explosion in the development of “smart instruments” (i.e. shared control 22 

robotic systems) which are wielded by the surgeon and augment their abilities95. One example is the use 23 

of articulated instruments which increase surgical access beyond the straight axes of the nasal corridor, 24 

with joystick-like control of the end-effector104, 105. Pre-clinical (IDEAL Stage 0) validation of these 25 

instruments is promising, outperforming standard rigid surgical instruments in terms of dexterity, control 26 

and ergonomics, whilst having the added ability to gather important surgical data through sensors (e.g. 27 

force applied) which could be feedback to surgeons in real-time106, 107.  28 

 29 

Ultimately, whether these instruments are rigid or soft, telesurgical or shared-control, as invasive and 30 

potentially high-risk devices they must undergo proportionate rigorous and systematic assessment for 31 

effectiveness, safety and cost-benefit, prior to integration into operating theatres of the future70.  32 

  33 
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3.4 Team Decision Support 1 

3.4.1 Challenges 2 

Pituitary surgery is technically challenging, and has steep learning curves, with practice variations across 3 

centres and countries11, 108-110. This leads to varying surgical outcomes along the learning curve and from 4 

centre to centre. This presents significant training challenges and raises the question as to which aspects 5 

of practice (i.e. surgical steps) are optimum and how best to learn them. However, no two surgeries are 6 

the same, and therefore interrogating differences in the performance of surgeries and generating 7 

comparative evidence between surgical techniques and technologies is challenging. Intraoperative 8 

decisions are therefore often via expert apprenticeship or reactively via trial and error. Historically, the 9 

resources required to extract the necessary data from surgical procedures to a granular level, and the 10 

number of variables and volume of data needed for meaningful analysis, meant answering these training 11 

and practice challenges was almost totally infeasible.  12 

 13 

3.4.2 Potential solutions 14 

The first step to answering many training and practice challenges in pituitary surgery and providing 15 

guidance to surgeons of the future is surgical workflow analysis108. This involves systematically breaking 16 

down operations into key phases and steps, codifying surgery into its fundamental building blocks. There 17 

is international consensus on the key phases and steps of pituitary surgery, but analysing surgeries in this 18 

fashion, for example, via review of operative videos, is very time and labour-intensive when done 19 

manually108, 111, 112. By applying machine learning and computer vision to operative videos, we can 20 

perform this workflow analysis automatically and accurately111-113.  21 

 22 

This AI-driven analysis has numerous potential benefits. Firstly, it generates a library of annotated videos 23 

and performance metrics (e.g., step duration and order) which can be reviewed by trainees and used for 24 

individualized coaching on surgical technique (i.e., directing training to particular steps of concern)113, 114. 25 

Secondly, this technology can be used in real-time and presented to the surgical team using intraoperative 26 

displays with the AI predicting current and future steps. This may improve operational efficiency during 27 

surgery, orchestrating the entire team to a common workflow, for example, highlighting the instruments 28 

needed next to the scrub technician or upcoming critical steps to the anaesthetists113.  29 

 30 

Furthermore, this technology provides the foundation for numerous avenues of further analysis. For 31 

example, computer vision-based detection of anatomical structures (e.g. optic nerves or carotid arteries) is 32 

triangulated to particular surgical steps, such as high-risk steps during tumour resection where the risk of 33 

neurovascular injury is highest. This information can again be used for educational retrospective review 34 

for trainees or in real-time, to guide surgeons intraoperatively. Through recognition of the normal 35 
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pituitary gland, delineating tumour margins may be easier. Similarly, the recognition and tracking of 1 

surgical instrument use and movement across critical operative steps may provide useful feedback for 2 

surgical trainees on their economy of movement and optimal kinematics115. This data could be integrated 3 

with “smart” instrument force data and anatomical data (using videos and navigation technology) and 4 

displayed using augmented reality to guide surgeons on the optimum manoeuvres (instrument use), at the 5 

optimum time (step) and place (anatomy). Future operating theatres will host these technologies and other 6 

innovations (e.g. wearable cardiorespiratory and neurosensory monitoring for staff) in concert, connecting 7 

them and all members of the operative team. If and when these smart theatres are widespread, and our 8 

performance is linked to postoperative outcomes, this technology may go further than simply orientating 9 

the team, and may provide outcome-driven guidance to surgeons in real-time - heralding the era of truly 10 

“information-guided” surgery67, 116. 11 

 12 

4. Optimizing Postoperative Care 13 

Once the surgical challenge of resecting the pituitary lesion has been surmounted, the post-operative 14 

phase commences. Postoperative care can be divided into inpatient and outpatient stages which have 15 

distinct challenges. The inpatient phase involves recovery from surgery, monitoring for surgical 16 

complications and initial outcomes. Whilst in the outpatient phase the suspected diagnosis is confirmed, 17 

and surveillance begins. Both look to risk stratify patients, however, achieving such foresight consistently 18 

remains a challenge.  19 

 20 

4.1 Inpatient Outcome Modelling 21 

4.1.1 Challenges 22 

Predicting outcomes is notoriously difficult after pituitary surgery, this includes the most common 23 

complications such as sodium abnormalities and cerebrospinal fluid rhinorrhoea109, 117-119. This results in 24 

the need for extended monitoring of patients postoperatively, and some groups have trialled prophylactic 25 

therapies on a blanket basis to prevent these common complications, for example, fluid restriction for 26 

SIADH or bed rest for CSF rhinorrhoea120. The core issue is our ability to accurately predict, and risk 27 

stratify patients postoperatively.  28 

 29 

4.1.2 Potential solutions 30 

Traditional methods have likely failed due to the need for multimodal datasets, containing a large number 31 

of variables with complex non-linear relationships to answer this particular unmet need. However, ML, 32 

especially neural networks, have the ability to analyse these datasets36. For example, intraoperative 33 

workflow analysis can be integrated into multimodal AI models with preoperative and postoperative data, 34 

such that the patients can be classified into high and low-risk groups for each surgical complication121. 35 
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High-risk groups may benefit from extended monitoring with closer attention to potential complications 1 

or prophylactic treatments, whilst low-risk groups may benefit from early discharge and fast-track 2 

protocols (sparing risks of nosocomial disease and streamlining resource allocation)117, 122. 3 

 4 

Furthermore, the development of novel biomarkers may supplement the above datasets or stand as 5 

independent predictors for patient outcomes. Many of these biomarkers have been diagnosis-orientated, 6 

and there is a growing appreciation for the clinical need for these biomarkers in the postoperative care 7 

phase. For example, novel imaging techniques such as OCT angiography provide a rapid non-invasive 8 

assessment of retinal microvasculature changes and may predict those who have structural retina 9 

improvements and functional vision recovery after surgery123. Similarly, digital biomarkers may be 10 

generated using active self-reporting of symptoms by patients via smartphone applications122, 124. When 11 

combined with a validated set of patient-reported outcome measures , which has recently been developed 12 

for patients undergoing pituitary surgery, this may generate a digital dataset otherwise unrepresented in 13 

traditional outcome reporting125. However, as the age of big data continues its growth, careful 14 

interrogation of the bias within the data-driven analysis is paramount. If a subset of patients (e.g. those 15 

with severe visual or functional disability) are unable to access and contribute to these biomarker datasets, 16 

resulting predictive models will not be valid in these populations. In the era of innovation, basic 17 

principles stand true, and the multidisciplinary pituitary team must ensure translated technologies are fair, 18 

equitable and accessible to the patients they care for.  19 

 20 

4.2. Outpatient Recurrence Monitoring 21 

4.2.1 Challenges 22 

For patients and clinicians and health systems, remission is an important treatment goal. It is challenging 23 

to define in functioning tumours, owing to the limitations of present methods of defining remission and 24 

the variances in an individual’s response to treatment108, 126. The importance of achieving remission 25 

differs depending upon the diagnosis - because adjuvant interventions (radiotherapy, gamma knife 26 

surgery, medication) mean, for example, in acromegaly remission can still be achieved after surgery127, 128. 27 

Deciding upon remission is fundamental for Cushing’s disease, as it aids neurosurgical decision-making 28 

with regard to more aggressive surgical resection of suspected lesions, gland, or even total removal of the 29 

pituitary gland129-131. In acromegaly, reliance on medication postoperatively leaves the patient vulnerable 30 

to treatment resistance. From a systems perspective, medical management of acromegaly is costly 31 

meaning remission provides gains for the wider health system, alongside the many individual benefit to 32 

the patient132. 33 

 34 

 35 
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4.2.2 Potential solutions 1 

Again, a data-driven machine learning approach has shown promise in outpatient surveillance, for 2 

example, it has been shown to outperform present prognostic biomarkers in determining remission in 3 

acromegaly, computing arrays of established variables in new ways to predict outcomes42, 133, 134. Single-4 

centre studies show promise in determining surgical success and endocrine outcomes, offering tailored 5 

treatment and follow-up approaches according to the likelihood of remission. Identifying treatment 6 

failures sooner will support definitive treatment decision-making, showing value in producing reliable 7 

and accurate prediction models of remission. Early identification of remission supports earlier discharge 8 

and outpatient monitoring. Pre-, intra- and day 1 postoperative variables have been used to model early 9 

remission, outperforming established prognostic factors. Similarly, prognostic factors in Cushing’s 10 

disease have been identified to associate with recurrence or remission135-138. Preoperative variables can be 11 

used to estimate immediate remission, supporting enhanced recovery pathways and reductions in length-12 

of-stay117, 139. In patients with delayed remission, decision-making remains a challenge, considering the 13 

outcome uncertainty and urge to achieve remission, placing value on prediction models identifying this 14 

subgroup of patients140. More generally, risk stratification can aid medical or radiotherapeutic adjuncts 15 

with earlier consultation of endocrinologists or oncologists in patients expected to respond poorly to 16 

surgery. Accurate prediction of remission could influence established treatment paradigms. First-line 17 

surgery for prolactinomas remains controversial, as medical therapies are easily available, however, 18 

means of predicting surgical success and remission, coupled with increasing surgical safety may become 19 

more accepted as a treatment option141. 20 

5. Conclusions  21 

We have the potential to significantly improve the lives of patients with pituitary adenomas with our 22 

recent advances in surgical, medical and radiological therapies. However, treatment failure is still a 23 

common problem and is influenced by significant challenges across the patient pathway – including 24 

screening, diagnosis, preoperative planning, surgical proficiency and postoperative care. The patient 25 

pathway of the future will integrate novel medical technologies - working in synergy with each other and 26 

in harmony with the multidisciplinary team. Clinicians must be the gatekeepers of technological 27 

translation, ensuring systematic assessment of risk and benefit, and leveraging these innovations to drive 28 

improved outcomes for patients of the future.   29 

 30 
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Essential Points 1 

• Contemporary challenges, and their solutions, have been identified and segmented into three 2 

phases of the pituitary patient pathway: the preoperative, intraoperative and postoperative phases. 3 

• Medical image computing, computer vision and natural language processing will harness novel 4 

data sets to achieve an earlier and more accurate diagnosis. 5 

• Decision-making will be enhanced through advanced preoperative imaging and next-generation 6 

surgical simulation and training, alongside multi-modal machine learning predicting treatment 7 

responses and tailoring treatment plans. 8 

• Surgical safety will be improved by novel intraoperative imaging and augmented reality 9 

providing new means of surgical navigation. 10 

• The next generation of tools to equip the pituitary surgeon, including advanced visualisation, 11 

surgical robotics and smart instruments will push the limits of safe surgical resection extent.  12 

• A surgical data science approach, using real-time AI systems will improve operative workflow, 13 

safety and team performance. 14 

• Novel biomarkers, computer vision and machine learning will provide early-warning systems for 15 

complications, identify recurrence and predict remission to reshape the postoperative care of this 16 

patient group. 17 
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