76 research outputs found

    Lymph node macrophages restrict murine cytomegalovirus dissemination

    Get PDF
    Cytomegaloviruses (CMVs) establish chronic infections that spread from a primary entry site to secondary vascular sites, such as the spleen, and then to tertiary shedding sites, such as the salivary glands. Human CMV (HCMV) is difficult to analyze, because its spread precedes clinical presentation. Murine CMV (MCMV) offers a tractable model. It is hypothesized to spread from peripheral sites via vascular endothelial cells and associated monocytes. However, viral luciferase imaging showed footpad-inoculated MCMV first reaching the popliteal lymph nodes (PLN). PLN colonization was rapid and further spread was slow, implying that LN infection can be a significant bottleneck. Most acutely infected PLN cells were CD169(+) subcapsular sinus macrophages (SSM). Replication-deficient MCMV also reached them, indicating direct infection. Many SSM expressed viral reporter genes, but few expressed lytic genes. SSM expressed CD11c, and MCMV with a cre-sensitive fluorochrome switch showed switched infected cells in PLN of CD11c-cre mice but yielded little switched virus. SSM depletion with liposomal clodronate or via a CD169-diphtheria toxin receptor transgene shifted infection to ER-TR7(+) stromal cells, increased virus production, and accelerated its spread to the spleen. Therefore, MCMV disseminated via LN, and SSM slowed this spread by shielding permissive fibroblasts and poorly supporting viral lytic replication

    Transport of Cytoplasmically Synthesized Proteins into the Mitochondria in a Cell Free System from Neurospora crassa

    Get PDF
    Synthesis and transport of mitochondrial proteins were followed in a cell-free homogenate of Neurospora crassa in which mitochondrial translation was inhibited. Proteins synthesized on cytoplasmic ribosomes are transferred into the mitochondrial fraction. The relative amounts of proteins which are transferred in vitro are comparable to those transferred in whole cells. Cycloheximide and puromycin inhibit the synthesis of mitochondrial proteins but not their transfer into mitochondria. The transfer of immunoprecipitable mitochondrial proteins was demonstrated for matrix proteins, carboxyatractyloside-binding protein and cytochrome c. Import of proteins into mitochondria exhibits a degree of specificity. The transport mechanism differentiates between newly synthesized proteins and preexistent mitochondrial proteins, at least in the case of matrix proteins. In the cell-free homogenate membrane-bound ribosomes are more active in the synthesis of mitochondrial proteins than are free ribosomes. The finished translation products appear to be released from the membrane-bound ribosomes into the cytosol rather than into the membrane vesicles. The results suggest that the transport of cytoplasmically synthesized mitochondrial proteins is essentially independent of cytoplasmic translation; that cytoplasmically synthesized mitochondrial proteins exist in an extramitochondrial pool prior to import; that the site of this pool is the cytosol for at least some of the mitochondrial proteins; and that the precursors in the extramitochondrial pool differ in structure or conformation from the functional proteins in the mitochondria

    Genome-Wide Assessment of AU-Rich Elements by the AREScore Algorithm

    Get PDF
    In mammalian cells, AU-rich elements (AREs) are well known regulatory sequences located in the 3′ untranslated region (UTR) of many short-lived mRNAs. AREs cause mRNAs to be degraded rapidly and thereby suppress gene expression at the posttranscriptional level. Based on the number of AUUUA pentamers, their proximity, and surrounding AU-rich regions, we generated an algorithm termed AREScore that identifies AREs and provides a numerical assessment of their strength. By analyzing the AREScore distribution in the transcriptomes of 14 metazoan species, we provide evidence that AREs were selected for in several vertebrates and Drosophila melanogaster. We then measured mRNA expression levels genome-wide to address the importance of AREs in SL2 cells derived from D. melanogaster hemocytes. Tis11, a zinc finger RNA–binding protein homologous to mammalian tristetraprolin, was found to target ARE–containing reporter mRNAs for rapid degradation in SL2 cells. Drosophila mRNAs whose expression is elevated upon knock down of Tis11 were found to have higher AREScores. Moreover high AREScores correlate with reduced mRNA expression levels on a genome-wide scale. The precise measurement of degradation rates for 26 Drosophila mRNAs revealed that the AREScore is a very good predictor of short-lived mRNAs. Taken together, this study introduces AREScore as a simple tool to identify ARE–containing mRNAs and provides compelling evidence that AREs are widespread regulatory elements in Drosophila

    Metabolic labeling of RNA uncovers principles of RNA production and degradation dynamics in mammalian cells

    Get PDF
    available in PMC 2011 November 01.Cellular RNA levels are determined by the interplay of RNA production, processing and degradation. However, because most studies of RNA regulation do not distinguish the separate contributions of these processes, little is known about how they are temporally integrated. Here we combine metabolic labeling of RNA at high temporal resolution with advanced RNA quantification and computational modeling to estimate RNA transcription and degradation rates during the response of mouse dendritic cells to lipopolysaccharide. We find that changes in transcription rates determine the majority of temporal changes in RNA levels, but that changes in degradation rates are important for shaping sharp 'peaked' responses. We used sequencing of the newly transcribed RNA population to estimate temporally constant RNA processing and degradation rates genome wide. Degradation rates vary significantly between genes and contribute to the observed differences in the dynamic response. Certain transcripts, including those encoding cytokines and transcription factors, mature faster. Our study provides a quantitative approach to study the integrative process of RNA regulation.Human Frontier Science Program (Strasbourg, France)Howard Hughes Medical InstituteBurroughs Wellcome Fund (Career Award at the Scientific Interface

    Cytomegalovirus microRNAs Facilitate Persistent Virus Infection in Salivary Glands

    Get PDF
    Micro (mi)RNAs are small non-coding RNAs that regulate the expression of their targets' messenger RNAs through both translational inhibition and regulation of target RNA stability. Recently, a number of viruses, particularly of the herpesvirus family, have been shown to express their own miRNAs to control both viral and cellular transcripts. Although some targets of viral miRNAs are known, their function in a physiologically relevant infection remains to be elucidated. As such, no in vivo phenotype of a viral miRNA knock-out mutant has been described so far. Here, we report on the first functional phenotype of a miRNA knock-out virus in vivo. During subacute infection of a mutant mouse cytomegalovirus lacking two viral miRNAs, virus production is selectively reduced in salivary glands, an organ essential for virus persistence and horizontal transmission. This phenotype depends on several parameters including viral load and mouse genetic background, and is abolished by combined but not single depletion of natural killer (NK) and CD4+ T cells. Together, our results point towards a miRNA-based immunoevasion mechanism important for long-term virus persistence

    Evolution of BCL-2/IgH hybrid gene RNA expression during treatment of T(14;18)-bearing follicular lymphomas

    Get PDF
    Bcl-2, the gene over-expressed in follicular lymphomas (FL), is able to block chemotherapy-induced apoptosis. Consequently, we wondered whether bcl-2/IgH expression variations during treatment of FL could predict the outcome of patients with t(14;18)-bearing FL. For this purpose, we used a reverse transcription polymerase chain reaction (RT-PCR) assay to analyse 180 serial peripheral blood samples (PBS) during 34 treatment phases in 25 patients with t(14;18)-bearing FL. In all patients but two, bcl-2/IgH gene expression was demonstrated in pre-treatment samples. During 16 out of the 34 treatment phases (47%), bcl-2/IgH expression became negative: all but one were responders to chemotherapy. This conversion was transient in six cases. In 18 treatment phases, bcl2/IgH expression remained detectable: eight were clinically considered as treatment failures, while eight others achieved PR and two achieved CR. We observed a significant correlation between treatment response and RNA PCR results (P = 0.002). Three-year overall survival of patients with stable bcl2/IgH-negative conversion was 100% compared to 54% for the remaining patients (P = 0.069); 3-year freedom from progression was respectively 87.5% and 13% (P = 0.005). These results indicate a correlation between bcl-2/IgH expression variations and both clinical response and outcome. Whether this might predict disease outcome early remains to be confirmed. © 1999 Cancer Research Campaig

    Coordinated repression of BIM and PUMA by Epstein-Barr virus latent genes maintains the survival of Burkitt lymphoma cells.

    Get PDF
    While the association of Epstein-Barr virus (EBV) with Burkitt lymphoma (BL) has long been recognised, the precise role of the virus in BL pathogenesis is not fully resolved. EBV can be lost spontaneously from some BL cell lines, and these EBV-loss lymphoma cells reportedly have a survival disadvantage. Here we have generated an extensive panel of EBV-loss clones from multiple BL backgrounds and examined their phenotype comparing them to their isogenic EBV-positive counterparts. We report that, while loss of EBV from BL cells is rare, it is consistently associated with an enhanced predisposition to undergo apoptosis and reduced tumorigenicity in vivo. Importantly, reinfection of EBV-loss clones with EBV, but surprisingly not transduction with individual BL-associated latent viral genes, restored protection from apoptosis. Expression profiling and functional analysis of apoptosis-related proteins and transcripts in BL cells revealed that EBV inhibits the upregulation of the proapoptotic BH3-only proteins, BIM and PUMA. We conclude that latent EBV genes cooperatively enhance the survival of BL cells by suppression of the intrinsic apoptosis pathway signalling via inhibition of the potent apoptosis initiators, BIM and PUMA.Cell Death and Differentiation advance online publication, 29 September 2017; doi:10.1038/cdd.2017.150

    Systematic Analysis of Cis-Elements in Unstable mRNAs Demonstrates that CUGBP1 Is a Key Regulator of mRNA Decay in Muscle Cells

    Get PDF
    BACKGROUND: Dramatic changes in gene expression occur in response to extracellular stimuli and during differentiation. Although transcriptional effects are important, alterations in mRNA decay also play a major role in achieving rapid and massive changes in mRNA abundance. Moreover, just as transcription factor activity varies between different cell types, the factors influencing mRNA decay are also cell-type specific. PRINCIPAL FINDINGS: We have established the rates of decay for over 7000 transcripts expressed in mouse C2C12 myoblasts. We found that GU-rich (GRE) and AU-rich (ARE) elements are over-represented in the 3'UTRs of short-lived mRNAs and that these mRNAs tend to encode factors involved in cell cycle and transcription regulation. Stabilizing elements were also identified. By comparing mRNA decay rates in C2C12 cells with those previously measured for pluripotent and differentiating embryonic stem (ES) cells, we identified several groups of transcripts that exhibit cell-type specific decay rates. Further, whereas in C2C12 cells the impact of GREs on mRNA decay appears to be greater than that of AREs, AREs are more significant in ES cells, supporting the idea that cis elements make a cell-specific contribution to mRNA stability. GREs are recognized by CUGBP1, an RNA-binding protein and instability factor whose function is affected in several neuromuscular diseases. We therefore utilized RNA immunoprecipitation followed by microarray (RIP-Chip) to identify CUGBP1-associated transcripts. These mRNAs also showed dramatic enrichment of GREs in their 3'UTRs and encode proteins linked with cell cycle, and intracellular transport. Interestingly several CUGBP1 substrate mRNAs, including those encoding the myogenic transcription factors Myod1 and Myog, are also bound by the stabilizing factor HuR in C2C12 cells. Finally, we show that several CUGBP1-associated mRNAs containing 3'UTR GREs, including Myod1, are stabilized in cells depleted of CUGBP1, consistent with the role of CUGBP1 as a destabilizing factor. CONCLUSIONS: Taken together, our results systematically establish cis-acting determinants of mRNA decay rates in C2C12 myoblast cells and demonstrate that CUGBP1 associates with GREs to regulate decay of a wide range of mRNAs including several that are critical for muscle development

    The Viral and Cellular MicroRNA Targetome in Lymphoblastoid Cell Lines

    Get PDF
    Epstein-Barr virus (EBV) is a ubiquitous human herpesvirus linked to a number of B cell cancers and lymphoproliferative disorders. During latent infection, EBV expresses 25 viral pre-microRNAs (miRNAs) and induces the expression of specific host miRNAs, such as miR-155 and miR-21, which potentially play a role in viral oncogenesis. To date, only a limited number of EBV miRNA targets have been identified; thus, the role of EBV miRNAs in viral pathogenesis and/or lymphomagenesis is not well defined. Here, we used photoactivatable ribonucleoside-enhanced crosslinking and immunoprecipitation (PAR-CLIP) combined with deep sequencing and computational analysis to comprehensively examine the viral and cellular miRNA targetome in EBV strain B95-8-infected lymphoblastoid cell lines (LCLs). We identified 7,827 miRNA-interaction sites in 3,492 cellular 3′UTRs. 531 of these sites contained seed matches to viral miRNAs. 24 PAR-CLIP-identified miRNA:3′UTR interactions were confirmed by reporter assays. Our results reveal that EBV miRNAs predominantly target cellular transcripts during latent infection, thereby manipulating the host environment. Furthermore, targets of EBV miRNAs are involved in multiple cellular processes that are directly relevant to viral infection, including innate immunity, cell survival, and cell proliferation. Finally, we present evidence that myc-regulated host miRNAs from the miR-17/92 cluster can regulate latent viral gene expression. This comprehensive survey of the miRNA targetome in EBV-infected B cells represents a key step towards defining the functions of EBV-encoded miRNAs, and potentially, identifying novel therapeutic targets for EBV-associated malignancies
    • …
    corecore