299 research outputs found

    Topographic variability and the influence of soil erosion on the carbon cycle

    Get PDF
    Soil erosion, particularly that caused by agriculture, is closely linked to the global carbon (C) cycle. There is a wide range of contrasting global estimates of how erosion alters soil-atmosphere C exchange. This can be partly attributed to limited understanding of how geomorphology, topography, and management practices affect erosion and oxidation of soil organic C (SOC). This work presents a physically based approach that stresses the heterogeneity at fine spatial scales of SOC erosion, SOC burial, and associated soil-atmosphere C fluxes. The Holcombe's Branch watershed, part of the Calhoun Critical Zone Observatory in South Carolina, USA, is the case study used. The site has experienced some of the most serious agricultural soil erosion in North America. We use SOC content measurements from contrasting soil profiles and estimates of SOC oxidation rates at multiple soil depths. The methodology was implemented in the tRIBS-ECO (Triangulated Irregular Network-based Real-time Integrated Basin Simulator-Erosion and Carbon Oxidation), a spatially and depth-explicit model of SOC dynamics built within an existing coupled physically based hydro-geomorphic model. According to observations from multiple soil profiles, about 32% of the original SOC content has been eroded in the study area. The results indicate that C erosion and its replacement exhibit significant topographic variation at relatively small scales (tens of meters). The episodic representation of SOC erosion reproduces the history of SOC erosion better than models that use an assumption of constant erosion in space and time. The net atmospheric C exchange at the study site is estimated to range from a maximum source of 14.5 g m−2 yr−1 to a maximum sink of −18.2 g m−2 yr−1. The small-scale complexity of C erosion and burial driven by topography exerts a strong control on the landscape's capacity to serve as a C source or a sink

    Energetic Ion Moments and Polytropic Index in Saturn’s Magnetosphere using Cassini/MIMI Measurements: A Simple Model Based on κ‐Distribution Functions

    Full text link
    Moments of the charged particle distribution function provide a compact way of studying the transport, acceleration, and interactions of plasma and energetic particles in the magnetosphere. We employ κ‐distributions to describe the energy spectra of H+ and O+, based on >20 keV measurements by the three detectors of Cassini’s Magnetospheric Imaging Instrument, covering the time period from DOY 183/2004 to 016/2016, 5 < L < 20. From the analytical spectra we calculate the equatorial distributions of energetic ion moments inside Saturn’s magnetosphere and then focus on the distributions of the characteristic energy (Ec=IE/In), temperature, and κ‐index of these ions. A semiempirical model is utilized to simulate the equatorial ion moments in both local time and L‐shell, allowing the derivation of the polytropic index (Γ) for both H+ and O+. Primary results are as follows: (a) The ∼9 < L < 20 region corresponds to a local equatorial acceleration region, where subadiabatic transport of H+ (Γ∼1.25) and quasi‐isothermal behavior of O+ (Γ∼0.95) dominate the ion energetics; (b) energetic ions are heavily depleted in the inner magnetospheric regions, and their behavior appears to be quasi‐isothermal (Γ<1); (c) the (quasi‐) periodic energetic ion injections in the outer parts of Saturn’s magnetosphere (especially beyond 17–18 RS) produce durable signatures in the energetic ion moments; (d) the plasma sheet does not seem to have a ground thermodynamic state, but the extended neutral gas distribution at Saturn provides an effective cooling mechanism that does not allow the plasma sheet to behave adiabatically.Key PointsDerivation of energetic ion moments, κ‐index, characteristic energy, temperature, and polytropic index in Saturn’s magnetospherePresentation of a semiempirical analytical model for the 20 keV energetic ion Pressure, density, and temperatureThe neutral gas at Saturn provides an effective cooling mechanism and does not allow the plasma sheet to behave adiabaticallyPeer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/146558/1/jgra54546.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/146558/2/jgra54546_am.pd

    Signature of a Heliotail Organized by the Solar Magnetic Field and the Role of Nonideal Processes in Modeled IBEX ENA Maps: A Comparison of the BU and Moscow MHD Models

    Get PDF
    Energetic neutral atom (ENA) models typically require post-processing routines to convert the distributions of plasma and H atoms into ENA maps. Here we investigate how two kinetic-MHD models of the heliosphere (the BU and Moscow models) manifest in modeled ENA maps using the same prescription and how they compare with Interstellar Boundary Explorer (IBEX) observations. Both MHD models treat the solar wind as a single-ion plasma for protons, which include thermal solar wind ions, pick-up ions (PUIs), and electrons. Our ENA prescription partitions the plasma into three distinct ion populations (thermal solar wind, PUIs transmitted and ones energized at the termination shock) and models the populations with Maxwellian distributions. Both kinetic-MHD heliospheric models produce a heliotail with heliosheath plasma that is organized by the solar magnetic field into two distinct north and south columns that become lobes of high mass flux flowing down the heliotail; however, in the BU model, the ISM flows between the two lobes at distances in the heliotail larger than 300 au. While our prescription produces similar ENA maps for the two different plasma and H atom solutions at the IBEX-Hi energy range (0.5–6 keV), the modeled ENA maps require a scaling factor of ∼2 to be in agreement with the data. This problem is present in other ENA models with the Maxwellian approximation of multiple ion species and indicates that either a higher neutral density or some acceleration of PUIs in the heliosheath is required

    IL-4-secreting CD4+ T cells are crucial to the development of CD8+ T-cell responses against malaria liver stages.

    No full text
    CD4+ T cells are crucial to the development of CD8+ T cell responses against hepatocytes infected with malaria parasites. In the absence of CD4+ T cells, CD8+ T cells initiate a seemingly normal differentiation and proliferation during the first few days after immunization. However, this response fails to develop further and is reduced by more than 90%, compared to that observed in the presence of CD4+ T cells. We report here that interleukin-4 (IL-4) secreted by CD4+ T cells is essential to the full development of this CD8+ T cell response. This is the first demonstration that IL-4 is a mediator of CD4/CD8 cross-talk leading to the development of immunity against an infectious pathogen

    Statistical Study of the Energetic Proton Environment at Titan’s Orbit From the Cassini Spacecraft

    Get PDF
    A statistical study of the energetic proton environment at Titan’s orbit as captured by the MIMI/LEMMS and MIMI/CHEMS instruments is performed. The data analyzed cover all the dedicated flybys of Titan by Cassini as well as the orbit crossings that happen far from the moon. The energetic environment is found to be highly variable on timescales comparable to that of the duration of a flyby. Analysis of H+ ion fluxes reveals a weak asymmetry in Saturn local time with the highest fluxes occurring in the premidnight sector of the magnetosphere. A correlation between the energetic ion fluxes and the location of Cassini in the magnetosphere with respect to the center of the current sheet can be observed. Finally, an empirical model of proton spectra for energies above 20 keV is derived based on fits to Kappa distribution functions. This model can be used to better understand the interaction of Titan with the magnetosphere and the energy deposition by energetic particles below the main ionospheric peak.Key PointsEnergetic particle environment at Titan’s orbit is highly variableIon data present SLT asymmetry with higher fluxes in the premidnight sectorDerivation of empirical model of ion spectra based on Kappa distribution function is presentedPeer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/145346/1/jgra54321_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/145346/2/jgra54321.pd

    The Effect of Enzymatically Polymerised Polyphenols on CD4 Binding and Cytokine Production in Murine Splenocytes

    Get PDF
    High-molecular weight polymerised polyphenols have been shown to exhibit anti-influenza virus, anti-HIV, and anti-cancer activities. The purpose of this study was to evaluate the immunomodulating activities of enzymatically polymerised polyphenols, and to clarify the underlying mechanisms of their effects. The cytokine-inducing activity of the enzymatically polymerised polyphenols derived from caffeic acid (CA), ferulic acid (FA), and p-coumaric acid (CoA) was investigated using murine splenocytes. Polymerised polyphenols, but not non-polymerised polyphenols, induced cytokine synthesis in murine splenocytes. Polymerised polyphenols induced several cytokines in murine splenocytes, with interferon-γ (IFN-γ) and granulocyte-macrophage colony-stimulating factor (GM-CSF) being the most prominent. The underlying mechanisms of the effects of the polymerised polyphenols were then studied using neutralising antibodies and fluorescent-activated cell sorting (FACS) analysis. Our results show that polymerised polyphenols increased IFN-γ and GM-CSF production in splenocytes. In addition, the anti-CD4 neutralised monoclonal antibody (mAb) inhibited polymerised polyphenol-induced IFN-γ and GM-CSF secretion. Moreover, polymerised polyphenols bound directly to a recombinant CD4 protein, and FACS analysis confirmed that interaction occurs between polymerised polyphenols and CD4 molecules expressed on the cell surface. In this study, we clearly demonstrated that enzymatic polymerisation confers immunoactivating potential to phenylpropanoic acids, and CD4 plays a key role in their cytokine-inducing activity

    Auroral beads at Saturn and the driving mechanism:Cassini proximal orbits

    Get PDF
    During the Grand Finale Phase of Cassini, the Ultraviolet Imaging Spectrograph on board the spacecraft detected repeated detached small-scale auroral structures. We describe these structures as auroral beads, a term introduced in the terrestrial aurora. Those on DOY 232 2017 are observed to extend over a large range of local times, i.e., from 20 LT to 11 LT through midnight. We suggest that the auroral beads are related to plasma instabilities in the magnetosphere, which are often known to generate wavy auroral precipitations. Energetic neutral atom enhancements are observed simultaneously with auroral observations, which are indicative of a heated high pressure plasma region. During the same interval we observe conjugate periodic enhancements of energetic electrons, which are consistent with the hypothesis that a drifting interchange structure passed the spacecraft. Our study indicates that auroral bead structures are common phenomena at Earth and giant planets, which probably demonstrates the existence of similar fundamental magnetospheric processes at these planets
    corecore