brought to you by CORE

Draft version September 25, 2019 Typeset using IAT_EX manuscript style in AASTeX63

Auroral beads at Saturn and the driving mechanism: Cassini proximal orbits	
A. $Radioti^1$	
Zhonghua Yao 1	
—	
Denis Grodent ¹	
—	
B. Palmaerts ¹	
—	
E. $Roussos^2$	
—	
K. Dialynas ³	
—	
D. $Mitchell^4$	
—	
Z. Pu^5	
S. V. BADMAN ^{6}	
JC. $Gérard^1$	

Corresponding author: Zhonghua Yao zhonghua.yao@uliege.be

W. $PRYOR^7$

B. Bonfond¹

¹Laboratoire de Physique Atmosphérique et Planétaire, STAR Institute, Université de Liège, Belgium ²Max Planck Institute for Solar System Research, Goettingen, Germany

³Office of Space Research and Technology, Academy of Athens, Athens 10679, Greece

⁴Applied Physics Laboratory, The Johns Hopkins University, Laurel, Maryland 20723, USA ⁵School of Earth and Space Sciences, Peking University, Beijing, China

⁶Department of Physics, Lancaster University, Bailrigg, Lancaster LA1 4YB, UK ⁷Science Department, Central Arizona College, Coolidge, Arizona, USA

ABSTRACT

During the Grand Finale Phase of Cassini, the Ultraviolet Imaging Spectrograph onboard the spacecraft detected repeated detached small scale auroral structures. We describe these structures as auroral beads, a term introduced in the terrestrial aurora. Those on DOY 232 2017 are observed to extend over a large range of local times, i.e., from 20 LT to 11 LT through the midnight. We suggest that the auroral beads are related to plasma instabilities in the magnetosphere, which are often known to generate wavy auroral precipitations. In particular, we propose that shear flow - ballooning (plasma pressure gradient) instabilities generate the observed auroral beads. Energetic neutral atom enhancements are observed simultaneously with the auroral observations, which are indicative of heated high pressure plasma region. During the same interval we observe conjugate periodic enhancements of energetic electrons, which are consistent with the hypothesis that a drifting interchange structure passed the spacecraft. Our study indicates that auroral beads structures are common phenomena at Earth and giant planets, which probably demonstrates the existence of similar fundamental magnetospheric processes at the two planets.

 $\mathbf{2}$

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

1. INTRODUCTION

37

38

Keywords: Saturn, aurora, Cassini, plasma instability

The aurora at Saturn often exhibits a particularly dynamical morphology, the study of which has 39 largely contributed to better understanding of Saturn's magnetosphere. Extensive auroral studies 40 have shown that the magnetosphere of Saturn is influenced by both the solar wind and internally 41 driven processes (e.g. Grodent (2015); Bunce et al. (2008); Badman et al. (2014); Radioti et al. 42 (2017); Yao et al. (2017a)). The shear in the rotational flow which is present near the boundary 43 between open and closed field lines (Bunce et al. 2008; Talboys et al. 2011; Jinks et al. 2014) is the 44 suggested driver of Saturn's main auroral emission. Additionally, hot tenuous plasma carried inward 45 in fast-moving flux tubes, which returns from a tail reconnection site to dayside have been shown 46 to generate auroral brightening enhancement in the dawn region (Badman et al. 2016; Clarke et al. 47 2005; Mitchell et al. 2009; Nichols et al. 2014; Radioti et al. 2015; Radioti et al. 2016). 48

Close auroral views from the Ultraviolet Imaging Spectrograph (UVIS) on board Cassini allowed 49 the detection and study of Saturn's small scale structures within the main auroral emission over the 50 last years. Small scale auroral structures have been previously reported on the noon and dusk sectors 51 (Grodent et al. 2011). Isolated patches observed simultaneously in both hemispheres are suggested 52 to be consistent with field-aligned currents and related to ultra low frequency waves (Meredith et al. 53 2013). Detached auroral features, of diameter of 6000 km in the ionosphere, propagating from dawn 54 to early afternoon are also reported in the aurora of Saturn (Radioti et al. 2015) and were linked 55 to large dynamic hot plasma populations which create regions with strong velocity gradients. The 56 small scale structures revealed by the high resolution auroral images are crucial for identifying the 57 driving mechanisms, for example to determine which plasma processes are involved by the shear 58 flow. Localised enhancements and small-scale structures are suggested to be part of a large scale 59 auroral enhancement in the dawn sector related to tail reconnection (Radioti et al. 2016) and re-60 connection outflow. Transient auroral intensifications are found to systematically exist in Saturn's 61

62 63 near-noon local times and is attributed to field aligned currents pulsating due to travelling slow mode compressional waves (Yao et al. 2017c).

In this study, we take advantage of the very close view of Saturn's aurorae collected at the end of 64 Cassini mission and during the proximal orbits, when the spacecraft approached Saturn very closely. 65 The unprecedented auroral images reveal a particular auroral morphology consisting of repetitive 66 detached small scale structures forming the bead structures. Auroral beads have been observed in 67 the terrestrial aurora and are believed to have very important implications in the understanding 68 of the substorm mechanism. They are suggested to be related to plasma pressure gradient driven 69 instabilities, known as ballooning instabilities (e.g. Pu et al. (1997); Liang et al. (2008); Kalmoni et al. 70 (2015)). Auroral beads at Earth are associated with drift ballooning mode waves in the near-Earth 71 plasma sheet (e.g. at ~ 10 R_E in the night magnetotail), which create upward and downward field 72 aligned currents reaching the ionosphere and short periodic ultra-low frequency (ULF) pulsations, 73 which often develop into substorm onsets (Keiling 2012). Bead auroral structures are very often 74 observed a few minutes prior to substorm expansion onset and thus the development of auroral beads 75 has been used as a diagnostic tool of plasma instabilities in the Earth's magnetotail (Liang et al. 76 2008; Kalmoni et al. 2015). In the present letter, we report the existence of auroral beads at Saturn 77 using the unprecedented auroral images at the end of Cassini mission during the proximal orbits, and 78 propose a hypothesis of its driving mechanisms by analysing the observations from magnetic field, 79 energetic particles and Energetic Neutral Atoms (ENA) emissions. 80

2. AURORAL BEADS AND ELECTRON MAGNETOSPHERIC WAVES OBSERVED BY

82

CASSINI ON 20 AUGUST, 2017

A few days before the end of its mission, Cassini spacecraft approached very close to Saturn and captured unprecedented detailed views of its aurora. Here, we present Cassini Ultraviolet Imaging Spectrograph (UVIS) (Esposito et al. 2004) auroral observations taken on 20 August, 2017 close to the end of the mission, together with simultaneous energetic electron observations obtained with the Cassini Low Energy Magnetospheric Measurement System (LEMMS) and Ion and Neutral Camera (INCA) measurements (Krimigis et al. 2004).

Figure 1 shows a sequence of polar projections of Saturn's southern aurora observed with the FUV 89 channel of the UVIS instrument on 20 August, 2017 DOY 232. During this sequence the spacecraft 90 closely approached the planet. Its altitude changed from 7.2 to 5.3 R_S and its sub-spacecraft latitude 91 increased from 34.9° to 40.8° between the start of the first image and the end of the last one. For 92 the construction of the projections we consider that the auroral emission peaks at 1100 km above the 93 surface (Gérard et al. 2009). The projections display FUV emissions restricted to the 120-163 nm 94 range in order to minimise contamination from solar reflection. The projected distance subtended 95 by a pixel, changes proportionally with the range to the planet along the line of sight. More details 96 on the method may be found in Grodent et al. (2011). In this study the images consist of three 97 subimages and each subimage is taken over ~ 30 min. The starting time of each image is indicated 98 on the top left of the panels of Figure 1. The right side of the figure shows one of the three subimages 99 (used to construct the complete image) which corresponds to the selected region indicated on the 100 complete projection on the left side. 101

The polar projections displayed on the left side of Figure 1 illustrate the whole auroral region, while 102 the right hand side of the figure focuses on the nightside auroral region, where multiple detached 103 and consecutive auroral spots are observed. One can easily discern 10-12 of them in the first image 104 which are observed to enhance in the second image. Because of their shape, they are described here 105 after as 'auroral beads'. This term has been used at Earth to describe auroral features with similar 106 morphological characteristics (Liang et al. 2008; Henderson 2009; Rae et al. 2009). The brightness 107 of the beads ranges from 30 to 80 kR, while they move to higher latitudes. The longitudinal 108 separation between beads is 0.5 local hour. The auroral beads are spanning over a large 109 local time sector (15h wide), from ~ 20 LT to ~ 11 LT via midnight at approximately 110 73° latitude. The rotating velocity is analysed in details in the Appendix to the paper. 111 They can last for at least 3 hours, which is the whole duration sequence. The yellow stars show the 112 magnetically mapped location of Cassini spacecraft at the time of the observation, indicating that 113 Cassini's location was close to the auroral beads. The mapping results were obtained using the 114 internal field model of Dougherty et al. (2005) combined with the ring current model of 115

RADIOTI ET AL.

¹¹⁶ Bunce et al. (2007). Given the location of Cassini close to the planet, the uncertainty ¹¹⁷ in the mapping introduced by the magnetopause distance inaccuracy is very limited, ¹¹⁸ less than 0.2° of latitude for a magnetopause distance change from 22 to $27R_s$. The ¹¹⁹ auroral beads reported here have a much smaller scale than the features reported by Radioti et al. ¹²⁰ (2015), while it is unclear if the two structures correspond to similar drivers to those reported here. ¹²¹ Auroral beads similar to those reported here are quite a common feature. They have been observed ¹²² at various high resolution datasets and mostly during the Grand Finale Cassini phase.

A similar pattern of repetitive spots is observed at lower latitudes, near $\sim 70^{\circ}$ along the 'outer 123 emission' of the auroral region, shown with the red arrows in the middle right panel of Figure 1. The 124 beads structures at lower latitudes are fainter ($\sim 10 \text{ kR}$) than those observed at 70° and do not seem 125 to be radially aligned with those at higher latitudes. The magnetospheric source region of the outer 126 emission is located closer to the planet in the inner magnetosphere (e.g.: Grodent et al. (2010)). The 127 similarity of the auroral structures on the main and the outer emission, may suggest similar plasma 128 processes (i.e., interchange instabilities), although the energy sources (e.g., pressure gradient force, 129 shear flow etc.) are likely different. 130

Simultaneously with the UV auroral observations, the INCA instrument onboard Cassini observed 131 enhancements of the Energetic Neutral Atoms (ENA) emissions, which are shown in Figure 2. The 132 images are 30 min integrations centered at the indicated time, and the x axis towards noon. In the 133 past, similar ENA enhancements were associated with dynamical events and were closely correlated 134 with UV transient features (Mitchell et al. 2009; Radioti et al. 2013). In this study we use ENA 135 observations in order to derive information about the spatial extent and the velocity of the heated 136 plasma region related to the simultaneous UV emissions. The ENA enhancement covers a wide range 137 of local times. At the beginning of the sequence the emission extends from \sim noon to midnight 138 with a peak at 18LT and at the end of the sequence it reaches 06LT. It should be noted that part 139 of the nightside emission between 7:20 UT and 9:16 UT is out of the field of view, because of the 140 changes of Cassini trajectory (Cassini was at 11 R_s and at 29° latitude at the beginning of the 141 sequence, while at 7:12 UT it was located at 7 R_S and at 37° latitude). The image taken at 7:12 UT 142

shows that there is enhancement before and after 00 LT while a portion of the nightside region is 143 missing, suggesting that there is continuous emission rotating from pre-midnight to post-midnight, 144 as documented numerous times in the literature (Krimigis et al. 2007; Mitchell et al. 2009; Carbary 145 et al. 2008; Dialynas et al. 2013). During the time of the auroral observations from $\sim 05:15$ to 08:30146 UT the ENA enhancement is located in the nightside region at the same local time sector as the 147 spotty auroral emissions. As mentioned in the introduction, the ENA emissions are indicative of a 148 rotating heated plasma region moving between the orbits of Rhea (9 R_S) and Titan (20.9 R_S). It 149 should be noted that this information is derived from equatorial projections of the ENA emission, 150 which are not shown here. The heated plasma region is estimated to rotate with an angular velocity 151 of $\sim 70\%$ of rigid corotation. 152

The LEMMS instrument on board Cassini, measured the differential intensities of energetic magne-153 tospheric electrons simultaneously with UVIS. Figure 3 shows the differential intensities of energetic 154 electrons from LEMMS channels C1 to C6, covering energies from 27 to 550 keV. The time interval 155 covered by the UVIS observations is shown by the grey shaded region on Figure 3. The electron 156 intensities measured by the four lower channels C1, C2, C3 and C4 are observed to fluctuate and 157 peak at approximately 05:00, 06:00, 07:00 and 08:00 UT, as indicated by the dashed lines. The 158 green arrows show the intervals between two peaks, which are approximately 1 hour. Contrary to 159 the electron flux enhancements observed in Figure 3, the 1-hour quasi-periodic pulsations (some-160 times referred to as QP60) described by Roussos et al. (2016) and Palmaerts et al. (2016) are mostly 161 detected at higher energies (from channel C5 at 175 keV up to several MeV) but could be mixed 162 with other electron populations at the lower energies considered in the present study. However, it is 163 clear in Figure 3 that the enhancements discussed here are not present at energies above 175 keV. 164 Additionally, they have a different morphology with a duration of about 10 min, except for the first 165 peak, while each individual QP60 generally lasts for about 60 min with a rapid flux increase followed 166 by a slow decay. We therefore consider that the events do not correspond to the same process that 167 generates the QP60 reported by Roussos et al. (2016) and Palmaerts et al. (2016). We need to point 168 out that the energetic electrons were measured at relatively high latitude (30 to 40 degrees), where 169

RADIOTI ET AL.

only the relatively field-aligned population on the equator could arrive. We could roughly estimate 170 the pitch angles for these electrons travelling to the magnetic equator. Since Cassini's footpoint is 171 on the main emission, indicating that the magnetic field is traced to the outer magnetosphere (close 172 to the open-closed field lines). The in situ measured magnetic field strength is about 50 to 200 nT 173 (not shown in this letter), and the equator magnetic strength in the outer magnetosphere is usually 174 a few nT (<5 nT) (Yao et al. 2017b), so that the maximum equatorial pitch angle for the measured 175 electrons is 18°. Usually this is almost at a space-borne instrument's angular resolution, and thus 176 could be described as a good field-aligned population. 177

3. AURORAL BEADS AT SATURN AND THEIR RELATION TO MAGNETOSPHERIC INSTABILITIES

We suggest that the auroral beads observed in the midnight to dawn region (20LT to 11LT) reported here are related to plasma instabilities in the magnetosphere, which in turn generate wave perturbations. At Earth, the auroral beads are often suggested to be driven by plasma ballooning instability, or balloon instability in mixture with shear flow named as shear flow-ballooning instability (i.e. Vinas & Madden (1986)). It is intriguing why Saturn has the similar auroral beads on its main aurora as at Earth.

The ENA enhancements observed in this study (Figure 2) are indicative of plasma pressure gradient 186 forces, which create diamagnetic currents. The diamagnetic currents stretch the magnetic field. 187 Pressure gradient in stretched magnetic field is indeed a favourable condition for driving ballooning 188 instabilities. Previous literature have revealed that flow shear exist on the dawn sector 189 outer magnetopause between the solar wind plasma flow and rotating magnetospheric 190 plasma (Masters et al. 2010; Delamere et al. 2013; Desroche et al. 2013). Therefore, shear 191 flow and pressure gradient co-exist in driving the main aurora. Regarding the similar morphology to 192 the Earth auroral beads and the favourable conditions in driving plasma instability, we propose that 193 the observed auroral beads at Saturn are driven by shear flow-ballooning instability, although we 194 could not evaluate the relative importances between the shear flow and the plasma pressure gradient 195 force. 196

178 179

The quasi periodic ~ 1 hour fluctuations observed in the electron intensities measured by the three 197 lower channels C1, C2 and C3 of LEMMS are consistent with drifting interchange structures in the 198 inner plasma sheet similar to those reported by Motoba et al. (2015) and Yao et al. (2017a). These 199 drifting structures can lead to excess of electrons on one side of the wave structure crest and result 200 in the creation of field aligned currents (Roux et al. 1991). In that case, the electrons stream toward 201 the ionosphere as upward field aligned currents, which are carried by downward moving electrons and 202 result in auroral intensifications such as the auroral beads observed here. The proposed mechanism 203 is illustrated in Figure 5. Following the similar timing and perturbed nature of energetic electrons 204 and auroral beads, we suggest that they are counterparts of the same process. As explained in 205 the Appendix to this letter, it is difficult to know exactly how fast the beads structure 206 rotated, but we could resolve all possible velocities, which are at angular velocity of 207 11%, 25%, 39% and 53%. The corresponding periods of electron pulsating are 189 min, 208 63 min, 38 min and 27 min. Since the electrons are found to pulsate at ~ 1 hour, which is 209 very consistent with the solution of 25%. Therefore, we suggest that the auroral beads 210 structure rotated at angular velocity of 25% rigid corotation, which corresponds to the 211 ~ 1 hour electron pulsation. As illustrated in Figure 5, the interchange plasma instability in the 212 magnetosphere drives an interchange downward/upward field-aligned currents, and thus pulsating 213 electron precipitations, causing auroral beads in the ionosphere. 214

The low latitude auroral emission (outer emission) shown in Figure 1 presents also auroral beads features morphological similar to those reported on the main emission. We do not have enough evidence to argue about the origin of these low latitude auroral beads. Ballooning instability is not expected to be involved in the triggering process because of the low curvature drift in that region. They could be related to shear flow instabilities like the giant undulations in the terrestrial aurora which are explained in terms of shear flow instabilities in the inner magnetospheric boundary driven by large shear flows between the inner plasmasheet and plasmasphere (Lui et al. 1982).

Our study indicates that auroral beads structures are caused by fundamental plasma processes that commonly exist at Earth and Saturn and possibly at other planets in our solar system.

RADIOTI ET AL.

ACKNOWLEDGMENTS

This work is based on observations with the UVIS instrument onboard the NASA/ESA Cassini spacecraft. ZY gratefully acknowledges support from the National Science Foundation of China (41525016). The research was supported by the Belgian Fund for Scientific Research (FNRS) and the PRODEX Program managed by the European Space Agency in collaboration with the Belgian Federal Science Policy Office. SVB was supported by an STFC Ernest Rutherford Fellowship ST/M005534/1. The Cassini/UVIS, LEMMS and INCA data used in this study are available through the Planetary Data System (https://pds.nasa.gov).

APPENDIX

224

²²⁵ The calculation of auroral beads rotating velocity

It is challenging to trace each auroral beads between the two auroral images, therefore we could not obtain an unambiguous calculation of auroral beads structure's rotating velocity. However, a generalised solution could be obtained, and the comparison with other dataset, i.e., electron pulsations, could help us to determine the most likely solution. Our methodology is described below step by step.

1. We integrate auroral intensity for the latitudes between 71 degrees to 76 degrees. As illustrated in the Figure in Appendix, the integral area well covers the beads structure, so that we obtain distributions of local time VS intensity for the beads auroral oval in the two images separated by 96 min. 2. It is clear that the beads structure has a wavelength of ~ 0.5 local hour, and there is a clear time shift between the two distributions, so that we can tell there was a propagation although it is challenging to tell how many wavelengths are involved in the rotation.

3. If the rotation between the two beads structures is less than one wavelength (0-level connection as shown in the figure), the auroral structure shall have rotated ~ 0.4 local hour in 96 min, corresponding to 11% rigid corotation velocity. If the rotation between the two beads structures is more than one wavelength but less than two wavelengths (1-level connection), then the auroral structure shall have rotated 0.9 local hour, corresponding to 25% of rigid corotation velocity. More generally, for n-level

connection, the rotating velocity is (11+14*n)% of rigid corotation. Since the main auroral oval is 242 known to rotate at 50-60% of rigid corotation (Grodent et al. 2005; Yao et al. 2018), the poleward 243 auroral structure, corresponding to more distant magnetosphere, shall rotate at a lower angular ve-244 locity. Therefore we reasonably suggest that n shall be not greater than 3. Note that the calculation 245 does not involve the motion of spacecraft's footpoint, which would induce a small correction due 246 to Doppler shift. The spacecraft's footpoint moves along the planetary rotating direction (i.e., the 247 same direction of auroral rotation) at an angular velocity of 0.1 local hour per hour, i.e., $\sim 4\%$ of 248 rigid corotation. Since the spacecraft's footpoint and auroral beads rotate in the same direction, the 249 relative speed of auroral beads in spacecraft's frame is (7+14*n)% of planetary rigid corotation. 250

4. Since the wavelength is ~0.5 local hour, the time difference between Cassini's two successive auroral beads would be 13.2/(0.07+0.14*n) min, where n indicates the n-level connection. For n = (0, 1, 2, 3), the time difference between two auroral peaks would be (189 min, 63 min, 38 min, 27 min).

5. The electron pulsation peaks have a time separation of ~ 1 hour, which is consistent with the solution for n=1, i.e., 1-level connection. Therefore, we suggest the 1-level connection picture for the beads velocity, i.e., subcorotation with a velocity of 25% rigid corotation.

REFERENCES

258	Badman, S. V., Jackman, C. M., Nichols, J. D.,	268
259	Clarke, J. T., & Gérard, JC. 2014, Icarus, 23	1,269
260	137, doi: 10.1016/j.icarus.2013.12.004	270
261	Badman, S. V., Provan, G., Bunce, E. J., et al.	271
262	2016, Icarus, 263, 83,	272
263	doi: 10.1016/j.icarus.2014.11.014	273
264	Bunce, E. J., Cowley, S. W. H., Alexeev, I. I.,	274
265	et al. 2007, Journal of Geophysical Research	275
266	(Space Physics), 112, 10202,	276
267	doi: 10.1029/2007JA012275	277

- Bunce, E. J., Arridge, C. S., Clarke, J. T., et al.
 2008, Journal of Geophysical Research (Space Physics), 113, 9209, doi: 10.1029/2008JA013257
- Carbary, J. F., Mitchell, D. G., Brandt, P.,
 Roelof, E. C., & Krimigis, S. M. 2008, Journal of Geophysical Research (Space Physics), 113, A05210, doi: 10.1029/2007JA012873
- Clarke, J. T., Gérard, J.-C., Grodent, D., et al.
 2005, Nature, 433, 717,
 doi: 10.1038/nature03331

278	Delamere, P. A., Wilson, R. J., Eriksson, S., &	307
279	Bagenal, F. 2013, Journal of Geophysical	308
280	Research (Space Physics), 118, 393,	309
281	doi: 10.1029/2012JA018197	310
282	Desroche, M., Bagenal, F., Delamere, P. A., &	311
283	Erkaev, N. 2013, Journal of Geophysical	312
284	Research (Space Physics), 118, 3087,	313
285	doi: 10.1002/jgra.50294	314
286	Dialynas, K., Brandt, P. C., Krimigis, S. M., et a]315
287	2013, Journal of Geophysical Research (Space	316
288	Physics), 118, 3027, doi: 10.1002/jgra.50295	317
289	Dougherty, M. K., Achilleos, N., Andre, N., et al	. 318
290	2005, Science, 307, 1266,	319
291	doi: 10.1126/science.1106098	320
292	Esposito, L. W., Barth, C. A., Colwell, J. E.,	321
293	et al. 2004, Space Science Review, 115, 299,	322
294	doi: 10.1007/s11214-004-1455-8	323
295	Gérard, JC., Bonfond, B., Gustin, J., et al. 2009	9,324
296	Geophysical Research Letters, 36, L02202,	325
297	doi: 10.1029/2008GL036554	326
298	Grodent, D. 2015, Space Science Review, 187, 23	, 327
299	doi: 10.1007/s11214-014-0052-8	328
300	Grodent, D., Gérard, JC., Cowley, S. W. H.,	329
301	Bunce, E. J., & Clarke, J. T. 2005, Journal of	330
302	Geophysical Research (Space Physics), 110,	331
303	7215, doi: $10.1029/2004$ JA010983	332
304	Grodent, D., Gustin, J., Gérard, JC., et al. 2012	l ₃₃₃
305	Journal of Geophysical Research (Space	334
306	Physics), 116, 9225, doi: 10.1029/2011JA01681	8335

- Grodent, D., Radioti, A., Bonfond, B., & Gérard,
 J.-C. 2010, Journal of Geophysical Research
 (Space Physics), 115, A08219,
 doi: 10.1029/2009JA014901
- Henderson, M. G. 2009, Annales Geophysicae, 27, 2129
- Jinks, S. L., Bunce, E. J., Cowley, S. W. H., et al. 2014, Journal of Geophysical Research (Space Physics), 119, 8161, doi: 10.1002/2014JA020367
- Kalmoni, N. M. E., Rae, I. J., Watt, C. E. J., et al. 2015, Journal of Geophysical Research (Space Physics), 120, 8503, doi: 10.1002/2015JA021470
- Keiling, A. 2012, Journal of Geophysical Research (Space Physics), 117, A03228, doi: 10.1029/2011JA017223
- Krimigis, S. M., Sergis, N., Mitchell, D. G., Hamilton, D. C., & Krupp, N. 2007, Nature, 450, 1050, doi: 10.1038/nature06425
- Krimigis, S. M., Mitchell, D. G., Hamilton, D. C., et al. 2004, Space Science Review, 114, 233, doi: 10.1007/s11214-004-1410-8
- Liang, J., Donovan, E. F., Liu, W. W., et al. 2008, Geophysical Research Letters, 35, L17S19, doi: 10.1029/2008GL033666
- Lui, A. T. Y., Meng, C.-I., & Ismail, S. 1982, Jou, 87, 2385, doi: 10.1029/JA087iA04p02385
- Masters, A., Achilleos, N., Kivelson, M. G., et al. 2010, Journal of Geophysical Research (Space Physics), 115, 7225, doi: 10.1029/2010JA015351

336	Meredith, C. J., Cowley, S. W. H., Hansen, K. C	. ,364]
337	Nichols, J. D., & Yeoman, T. K. 2013, Journa	l 365	
338	of Geophysical Research (Space Physics), 118,	366]
339	2244, doi: 10.1002/jgra.50270	367	
340	Mitchell, D. G., Krimigis, S. M., Paranicas, C.,	368	
341	et al. 2009, Planetary and Space Science, 57,	369	
342	1732, doi: 10.1016/j.pss.2009.04.002	370]
343	Motoba, T., Ohtani, S., Donovan, E. F., &	371	
344	Angelopoulos, V. 2015, Journal of Geophysica	372 l	
345	Research (Space Physics), 120, 432,	373]
346	doi: 10.1002/2014JA020694	374	
247	Nichols I D. Badman S. V. Bainos K. H.	375	
347	at al 2014 Coophysical Research Letters 41	376	r
348	3223 doi: 10.1002/2014CL060186	377	
349	5525 , doi: 10.1002/2014GL000180	378	
350	Palmaerts, B., Roussos, E., Krupp, N., et al. 201	6379	
351	Icarus, 271, 1, doi: 10.1016/j.icarus.2016.01.02	5 380	7
351 352	Icarus, 271, 1, doi: 10.1016/j.icarus.2016.01.02 Pu, Z. Y., Korth, A., Chen, Z. X., et al. 1997,	5 380 381	
351 352 353	 Icarus, 271, 1, doi: 10.1016/j.icarus.2016.01.02 Pu, Z. Y., Korth, A., Chen, Z. X., et al. 1997, Journal of Geophysical Research, 102, 14397, 	5 380 381 382	,
351 352 353 354	 Icarus, 271, 1, doi: 10.1016/j.icarus.2016.01.02 Pu, Z. Y., Korth, A., Chen, Z. X., et al. 1997, Journal of Geophysical Research, 102, 14397, doi: 10.1029/97JA00772 	5 380 381 382 383	-
351 352 353 354 355	 Icarus, 271, 1, doi: 10.1016/j.icarus.2016.01.02 Pu, Z. Y., Korth, A., Chen, Z. X., et al. 1997, Journal of Geophysical Research, 102, 14397, doi: 10.1029/97JA00772 Badioti, A., Grodent, D., Gérard, JC., et al. 	5 380 381 382 383 384	-
351 352 353 354 355 356	 Icarus, 271, 1, doi: 10.1016/j.icarus.2016.01.02 Pu, Z. Y., Korth, A., Chen, Z. X., et al. 1997, Journal of Geophysical Research, 102, 14397, doi: 10.1029/97JA00772 Radioti, A., Grodent, D., Gérard, JC., et al. 2015, Journal of Geophysical Research (Space) 	5 380 381 382 383 384 385	
351 352 353 354 355 356 357	 Icarus, 271, 1, doi: 10.1016/j.icarus.2016.01.02 Pu, Z. Y., Korth, A., Chen, Z. X., et al. 1997, Journal of Geophysical Research, 102, 14397, doi: 10.1029/97JA00772 Radioti, A., Grodent, D., Gérard, JC., et al. 2015, Journal of Geophysical Research (Space Physics), 120, 8633, doi: 10.1002/2015JA02144 	5 380 381 382 383 384 385 386 42	
351 352 353 354 355 356 357	 Icarus, 271, 1, doi: 10.1016/j.icarus.2016.01.02 Pu, Z. Y., Korth, A., Chen, Z. X., et al. 1997, Journal of Geophysical Research, 102, 14397, doi: 10.1029/97JA00772 Radioti, A., Grodent, D., Gérard, JC., et al. 2015, Journal of Geophysical Research (Space Physics), 120, 8633, doi: 10.1002/2015JA02144 	5 380 381 382 383 384 385 386 42 387 7	
351 352 353 354 355 356 357 358	 Icarus, 271, 1, doi: 10.1016/j.icarus.2016.01.02 Pu, Z. Y., Korth, A., Chen, Z. X., et al. 1997, Journal of Geophysical Research, 102, 14397, doi: 10.1029/97JA00772 Radioti, A., Grodent, D., Gérard, JC., et al. 2015, Journal of Geophysical Research (Space Physics), 120, 8633, doi: 10.1002/2015JA02144 Radioti, A., Grodent, D., Grard, JC., et al. 201 	5 380 381 382 383 384 385 386 42 387 7 388	
351 352 353 354 355 356 357 358 359	 Icarus, 271, 1, doi: 10.1016/j.icarus.2016.01.02 Pu, Z. Y., Korth, A., Chen, Z. X., et al. 1997, Journal of Geophysical Research, 102, 14397, doi: 10.1029/97JA00772 Radioti, A., Grodent, D., Gérard, JC., et al. 2015, Journal of Geophysical Research (Space Physics), 120, 8633, doi: 10.1002/2015JA02144 Radioti, A., Grodent, D., Grard, JC., et al. 201 Journal of Geophysical Research: Space Physical Research: Space Physical Research: Space Physical Research 	5 380 381 382 383 384 385 386 42 387 7 388 387 7 388	-
351 352 353 354 355 356 357 358 359 360	 Icarus, 271, 1, doi: 10.1016/j.icarus.2016.01.02 Pu, Z. Y., Korth, A., Chen, Z. X., et al. 1997, Journal of Geophysical Research, 102, 14397, doi: 10.1029/97JA00772 Radioti, A., Grodent, D., Gérard, JC., et al. 2015, Journal of Geophysical Research (Space Physics), 120, 8633, doi: 10.1002/2015JA02144 Radioti, A., Grodent, D., Grard, JC., et al. 201 Journal of Geophysical Research: Space Physic 122, 6078, doi: 10.1002/2016JA023820 	5 380 381 382 383 384 385 386 12 387 7 388 CS 389 390	-
351 352 353 354 355 356 357 358 359 360	 Icarus, 271, 1, doi: 10.1016/j.icarus.2016.01.02 Pu, Z. Y., Korth, A., Chen, Z. X., et al. 1997, Journal of Geophysical Research, 102, 14397, doi: 10.1029/97JA00772 Radioti, A., Grodent, D., Gérard, JC., et al. 2015, Journal of Geophysical Research (Space Physics), 120, 8633, doi: 10.1002/2015JA02144 Radioti, A., Grodent, D., Grard, JC., et al. 201 Journal of Geophysical Research: Space Physic 122, 6078, doi: 10.1002/2016JA023820 Radioti, A., Roussos, E., Grodent, D., et al. 2013 	5 380 381 382 383 384 385 386 12 387 7 388 CS 389 390 3, 391	-
 351 352 353 354 355 356 357 358 359 360 361 362 	 Icarus, 271, 1, doi: 10.1016/j.icarus.2016.01.02 Pu, Z. Y., Korth, A., Chen, Z. X., et al. 1997, Journal of Geophysical Research, 102, 14397, doi: 10.1029/97JA00772 Radioti, A., Grodent, D., Gérard, JC., et al. 2015, Journal of Geophysical Research (Space Physics), 120, 8633, doi: 10.1002/2015JA02144 Radioti, A., Grodent, D., Grard, JC., et al. 201 Journal of Geophysical Research: Space Physic 122, 6078, doi: 10.1002/2016JA023820 Radioti, A., Roussos, E., Grodent, D., et al. 2013 Journal of Geophysical Research (Space 	5 380 381 382 383 384 385 386 12 387 7 388 CS 389 390 3,391 392	-

- Radioti, A., Grodent, D., Jia, X., et al. 2016, icarus, 263, 75, doi: 10.1016/j.icarus.2014.12.016
- Rae, I. J., Mann, I. R., Angelopoulos, V., et al.
 2009, Journal of Geophysical Research (Space Physics), 114, A07220,
 doi: 10.1029/2008JA013771
- Roussos, E., Krupp, N., Mitchell, D. G., et al.
 2016, Icarus, 263, 101,
 doi: 10.1016/j.icarus.2015.04.017
- Roux, A., Perraut, S., Robert, P., et al. 1991,Journal of Geophysical Research (Space Physics), 96, 17, doi: 10.1029/91JA01106
- Talboys, D. L., Bunce, E. J., Cowley, S. W. H., et al. 2011, Journal of Geophysical Research (Space Physics), 116, A04213, doi: 10.1029/2010JA016102
- Vinas, A. F., & Madden, T. R. 1986, Jounral of Geophysical Research (Space Physics), 91, 1519, doi: 10.1029/JA091iA02p01519
- Yao, Z., Pu, Z. Y., Rae, I. J., Radioti, A., &
 Kubyshkina, M. V. 2017a, Geoscience Letters,
 doi: 10.1186/s40562-017-0075-6
- Yao, Z., Coates, A., Ray, L., et al. 2017b, The Astrophysical Journal Letters, 846, L25
- Yao, Z. H., Radioti, A., Rae, I. J., et al. 2017c,
 Geophysical Research Letters, 44, 11,
 doi: 10.1002/2017GL075108
- Yao, Z., Radioti, A., Grodent, D., et al. 2018, Journal of Geophysical Research: Space Physics, 123, 8502

Figure 1. A sequence of polar projections of Saturn's southern aurora obtained with the FUV channel of UVIS onboard Cassini during the Cassini proximal orbits. The first image starts at 0514 UT and the last one at 0828 UT on DOY 232, 2017. Noon is to the bottom and dusk to the right. The grid shows latitudes at intervals of 10° and meridians every 30° . Each panel of the right column displays one of the 3 subimages used to reconstruct the corresponding complete image on the left. The yellow arrows indicate some of the auroral beads on the main emission and the red ones those on the low latitude emission. The yellow star points out to the magnetically mapped location of Cassini spacecraft the time of the observation.

Figure 2. ENA emissions from Saturn's magnetosphere starting on DOY 231 2017 at 23:57 and ending on 232 2017 at 09:16 UT. The images were integrated over 30 minutes and centered on the indicated time. The circles represent the orbits of Saturn's innermost moons, namely Dione ($\sim 6.2 R_S$) and Rhea ($\sim 8.7 R_S$), together with the orbit of Titan ($\sim 20 R_S$). The Z axis is aligned with Saturn's spin axis, the X axis (highlighted in red) indicates the direction toward the sun, and the Y axis points to dusk.

Figure 3. Differential intensities of energetic electrons from channels C1 to C6 covering the energies from 27 to 550 keV of the Low Energy Magnetospheric Measurement System (LEMMS) instrument onboard Cassini. The grey shaded region shows the interval during which UVIS captured the auroral emission shown in Figure 1. The dashed lines mark the peaks of the electron intensities mainly seen in the low energy channels. The green arrows indicate the approximately every hour intervals between two peaks.

Figure 4. Schematic illustration of the build-up of field-aligned currents by magnetospheric plasma instabilities, which generate drifting interchange structures. These perturbations can lead to excess of electrons on one side of the wave crest structure and result in creation of field aligned currents. Upward field aligned currents carried by downward moving electrons result in localised auroral intensifications in the form of 'beads'.

Figure 5. Appendix to the letter. Top panel: the two auroral images shown in Figure 1. Bottom panel: the distributions of local time VS auroral intensity integrated between 71 to 76 degrees in latitude for the two auroral images on the top panel.