343 research outputs found

    Occurrence and molecular characterization of a 16SrI-R subgroup phytoplasma associated with Aquilegia vulgaris phyllody disease

    Get PDF
    During 2016–2017 surveys, carried out for phytoplasma diseases in ornamental plants in Chaharmahal and Bakhtiari provinces, Iran, found symptoms of virescence, phyllody, reduced size of leaves and flowers in columbine (Aquilegia vulgaris). Total DNAs extracted from symptomatic and symptomless plants were tested for the presence of phytoplasma using P1/P7 and R16F2n/R16R2 primers in direct and nested PCR producing amplicons of about 1.8 and 1.2 kb, respectively, from all symptomatic A. vulgaris plants, but not from symptomless ones. The consensus sequence of the detected phytoplasma named Aquilegia phyllody (APh) was 100% identical with strains clustering to phytoplasmas enclosed in the 16SrI group as also confirmed by phylogenetic analyses. Both real and virtual restriction fragment length polymorphism analysis of R16F2n/R16R2 amplicons showed profiles that were identical to each other and indicated the affiliation of the APh phytoplasma to the 16SrI-R subgroup. This is the first report of a 16SrI-R phytoplasma associated with this A. vulgaris phyllody disease

    Prospective Quantitative Neuroimaging Analysis of Putative Temporal Lobe Epilepsy

    Get PDF
    Purpose: A prospective study of individual and combined quantitative imaging applications for lateralizing epileptogenicity was performed in a cohort of consecutive patients with a putative diagnosis of mesial temporal lobe epilepsy (mTLE). Methods: Quantitative metrics were applied to MRI and nuclear medicine imaging studies as part of a comprehensive presurgical investigation. The neuroimaging analytics were conducted remotely to remove bias. All quantitative lateralizing tools were trained using a separate dataset. Outcomes were determined after 2 years. Of those treated, some underwent resection, and others were implanted with a responsive neurostimulation (RNS) device. Results: Forty-eight consecutive cases underwent evaluation using nine attributes of individual or combinations of neuroimaging modalities: 1) hippocampal volume, 2) FLAIR signal, 3) PET profile, 4) multistructural analysis (MSA), 5) multimodal model analysis (MMM), 6) DTI uncertainty analysis, 7) DTI connectivity, and 9) fMRI connectivity. Of the 24 patients undergoing resection, MSA, MMM, and PET proved most effective in predicting an Engel class 1 outcome (\u3e80% accuracy). Both hippocampal volume and FLAIR signal analysis showed 76% and 69% concordance with an Engel class 1 outcome, respectively. Conclusion: Quantitative multimodal neuroimaging in the context of a putative mTLE aids in declaring laterality. The degree to which there is disagreement among the various quantitative neuroimaging metrics will judge whether epileptogenicity can be confined sufficiently to a particular temporal lobe to warrant further study and choice of therapy. Prediction models will improve with continued exploration of combined optimal neuroimaging metrics

    Lavandula angustifolia Extract Improves the Result of Human Umbilical Mesenchymal Wharton's Jelly Stem Cell Transplantation after Contusive Spinal Cord Injury in Wistar Rats

    Get PDF
    Introduction. The primary trauma of spinal cord injury (SCI) results in severe damage to nervous functions. At the cellular level, SCI causes astrogliosis. Human umbilical mesenchymal stem cells (HUMSCs), isolated from Wharton's jelly of the umbilical cord, can be easily obtained. Previously, we showed that the neuroprotective effects of Lavandula angustifolia can lead to improvement in a contusive SCI model in rats. Objective. The aim of this study was to investigate the effect of L. angustifolia (Lav) on HUMSC transplantation after acute SCI. Materials and Methods. Sixty adult female rats were randomly divided into eight groups. Every week after SCI onset, all animals were evaluated for behavior outcomes. H&E staining was performed to examine the lesions after injury. GFAP expression was assessed for astrogliosis. Somatosensory evoked potential (SEP) testing was performed to detect the recovery of neural conduction. Results. Behavioral tests showed that the HUMSC group improved in comparison with the SCI group, but HUMSC + Lav 400 was very effective, resulting in a significant increase in locomotion activity. Sensory tests and histomorphological and immunohistochemistry analyses verified the potentiation effects of Lav extract on HUMSC treatment. Conclusion. Transplantation of HUMSCs is beneficial for SCI in rats, and Lav extract can potentiate the functional and cellular recovery with HUMSC treatment in rats after SCI. Copyright © 2016 Kayvan Yaghoobi et al

    Characterization of a Wireless Vacuum Sensor Prototype Based on the SAW-Pirani Principle

    Get PDF
    A prototype of a wireless vacuum microsensor combining the Pirani principle and surface acoustic waves (SAW) with extended range and sensitivity was designed, modelled, manufactured and characterised under different conditions. The main components of the prototype are a sensing SAW chip, a heating coil and an interrogation antenna. All the components were assembled on a 15 mm × 11 mm × 3 mm printed circuit board (PCB). The behaviour of the PCB was characterised under ambient conditions and in vacuum. The quality of the SAW interrogation signal, the frequency shift and the received current of the coil were measured for different configurations. Pressures between 0.9 and 100,000 Pa were detected with sensitivities between 2.8 GHz/Pa at 0.9 Pa and 1 Hz/Pa close to atmospheric pressure. This experiment allowed us to determine the optimal operating conditions of the sensor and the integration conditions inside a vacuum chamber in addition to obtaining a pressure-dependent signal

    Real‐Time NMR Monitoring of Spatially Segregated Enzymatic Reactions in Multilayered Hydrogel Assemblies**

    Get PDF
    Compartmentalized chemical reactions at the microscale are important in biotechnology, yet monitoring the molecular content at these small scales is challenging. To address this challenge, we integrate a compact, reconfigurable reaction cell featuring electrochemical functionality with high-resolution NMR spectroscopy. We demonstrate the operation of this system by monitoring the activity of enzymes immobilized in chemically distinct layers within a multi-layered chitosan hydrogel assembly. As a benchmark, we observed the parallel activities of urease (Urs), catalase (Cat), and glucose oxidase (GOx) by monitoring reagent and product concentrations in real-time. Simultaneous monitoring of an independent enzymatic process (Urs) together with a cooperative process (GOx + Cat) was achieved, with chemical conversion modulation of the GOx + Cat process demonstrated by varying the order in which the hydrogel was assembled

    Assessment of the neuroprotective effects of Lavandula angustifolia extract on the contusive model of spinal cord injury in wistar rats

    Get PDF
    Introduction: Spinal cord injury (SCI) involves a primary trauma and secondary cellular processes that can lead to severe damage to the nervous system, resulting in long-term spinal deficits. At the cellular level, SCI causes astrogliosis, of which glial fibrillary acidic protein (GFAP) is a major index. Objective: The aim of this study was to investigate the neuroprotective effects of Lavandula angustifolia (Lav) on the repair of spinal cord injuries in Wistar rats. Materials and Methods: Forty-five female rats were randomly divided into six groups of seven rats each: the intact, sham, control (SCI), Lav 100, Lav 200, and Lav 400 groups. Every week after SCI onset, all animals were evaluated for behavior outcomes by the Basso, Beattie, and Bresnahan (BBB) score. H&E staining was performed to examine the lesions post-injury. GFAP expression was assessed for astrogliosis. Somatosensory evoked potential (SEP) testing was performed to detect the recovery of neural conduction. Results: BBB scores were significantly increased and delayed responses on sensory tests were significantly decreased in the Lav 200 and Lav 400 groups compared to the control group. The greatest decrease of GFAP was evident in the Lav 200 and Lav 400 groups. EMG results showed significant improvement in the hindlimbs in the Lav 200 and Lav 400 groups compared to the control group. Cavity areas significantly decreased and the number of ventral motor neurons significantly increased in the Lav 200 and Lav 400 groups. Conclusion: Lav at doses of 200 and 400 mg/kg can promote structural and functional recovery after SCI. The neuroprotective effects of L. angustifolia can lead to improvement in the contusive model of SCI in Wistar rats. © 2016 Kaka, Yaghoobi, Davoodi, Hosseini, Sadraie and Mansouri

    The Tyrphostin Agent AG490 Prevents and Reverses Type 1 Diabetes in NOD Mice

    Get PDF
    <div><h3>Background</h3><p>Recent studies in the NOD (non-obese diabetic) mouse model of type 1 diabetes (T1D) support the notion that tyrosine kinase inhibitors have the potential for modulating disease development. However, the therapeutic effects of AG490 on the development of T1D are unknown.</p> <h3>Materials and Methods</h3><p>Female NOD mice were treated with AG490 (i.p, 1 mg/mouse) or DMSO starting at either 4 or 8 week of age, for five consecutive week, then once per week for 5 additional week. Analyses for the development and/or reversal of diabetes, insulitis, adoptive transfer, and other mechanistic studies were performed.</p> <h3>Results</h3><p>AG490 significantly inhibited the development of T1D (p = 0.02, p = 0.005; at two different time points). Monotherapy of newly diagnosed diabetic NOD mice with AG490 markedly resulted in disease remission in treated animals (n = 23) in comparision to the absolute inability (0%; 0/10, p = 0.003, Log-rank test) of DMSO and sustained eugluycemia was maintained for several months following drug withdrawal. Interestingly, adoptive transfer of splenocytes from AG490 treated NOD mice failed to transfer diabetes to recipient NOD.<em>Scid</em> mice. CD4 T-cells as well as bone marrow derived dendritic cells (BMDCs) from AG490 treated mice, showed higher expression of Foxp3 (p<0.004) and lower expression of co-stimulatory molecules, respectively. Screening of the mouse immune response gene arrary indicates that expression of costimulaotry molecule Ctla4 was upregulated in CD4+ T-cell in NOD mice treated with AG490, suggesting that AG490 is not a negative regulator of the immune system.</p> <h3>Conclusion</h3><p>The use of such agents, given their extensive safety profiles, provides a strong foundation for their translation to humans with or at increased risk for the disease.</p> </div

    Assessment of the association between body composition and risk of non-alcoholic fatty liver

    Get PDF
    Non-alcoholic fatty liver disease (NAFLD) is defined as the condition of fat accumulation in the liver. This cross-sectional study aimed to investigate the relationship between body composition and fatty liver and determine of cut-off point for predicting NAFLD. Samples were selected from the nutrition clinic from 2016 to 2017 in Tehran, Iran. The liver steatosis was calculated using the CAP score through the FiroScan� and body composition was measured using the dual-energy X-ray absorptiometry scan method. A total of 2160 patients participated in this study, 745 (34.5) subjects had NAFLD. We found that fat-free tissue was inversely and fat tissue was directly correlated with the risk of NAFLD in almost all factors and the risk of developing NAFLD increases if the total fat exceeds 32.23 and 26.73 in women and men and abdominal fat exceeds 21.42 and 13.76 in women and men, respectively. Finally, we realized that the total fat percent had the highest AUC (0.932 for men and 0.917 for women) to predict the risk of NAFLD. Overall, the likelihood of NAFLD development rose significantly with increasing the amount of total fat and abdominal fat from the cut-off point level. Copyright: © 2021 Ariya et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

    Optical and Infrared Diagnostics of SDSS galaxies in the SWIRE Survey

    Get PDF
    We present the rest-frame optical and infrared colours of a complete sample of 1114 z<0.3 galaxies from the Spitzer Wide-area InfraRed Extragalactic Legacy Survey (SWIRE) and the Sloan Digital Sky Survey (SDSS). We discuss the optical and infrared colours of our sample and analyse in detail the contribution of dusty star-forming galaxies and AGN to optically selected red sequence galaxies. We propose that the optical (g-r) colour and infrared log(L_{24}/L_{3.6}) colour of galaxies in our sample are determined primarily by a bulge-to-disk ratio. The (g-r) colour is found to be sensitive to the bulge-to-disk ratio for disk-dominated galaxies, whereas the log(L_{24}/L_{3.6}) colour is more sensitive for bulge-dominated systems. We identify ~18% (195 sources) of our sample as having red optical colours and infrared excess. Typically, the infrared luminosities of these galaxies are found to be at the high end of star-forming galaxies with blue optical colours. Using emission line diagnostic diagrams, 78 are found to have an AGN contribution, and 117 are identified as star-forming systems. The red (g-r) colour of the star-forming galaxies could be explained by extinction. However, their high optical luminosities cannot. We conclude that they have a significant bulge component. The number densities of optically red star-forming galaxies are found to correspond to ~13% of the total number density of our sample. In addition, these systems contribute ~13% of the total optical luminosity density, and 28% of the total infrared luminosity density of our SWIRE/SDSS sample. These objects may reduce the need for "dry-mergers".Comment: 14 pages, 8 figures, 4 tables. Accepted for publication in MNRA
    corecore