773 research outputs found
Huge negative differential conductance in Au-H2 molecular nanojunctions
Experimental results showing huge negative differential conductance in
gold-hydrogen molecular nanojunctions are presented. The results are analyzed
in terms of two-level system (TLS) models: it is shown that a simple TLS model
cannot produce peaklike structures in the differential conductance curves,
whereas an asymmetrically coupled TLS model gives perfect fit to the data. Our
analysis implies that the excitation of a bound molecule to a large number of
energetically similar loosely bound states is responsible for the peaklike
structures. Recent experimental studies showing related features are discussed
within the framework of our model.Comment: 9 pages, 8 figure
Conductance of Pd-H nanojunctions
Results of an experimental study of palladium nanojunctions in hydrogen
environment are presented. Two new hydrogen-related atomic configurations are
found, which have a conductances of ~0.5 and ~1 quantum unit (2e^2/h). Phonon
spectrum measurements demonstrate that these configurations are situated
between electrodes containing dissolved hydrogen. The crucial differences
compared to the previously studied Pt-H_2 junctions, and the possible
microscopic realizations of the new configurations in palladium-hydrogen
atomic-sized contacts are discussed.Comment: 4 pages, 4 figure
Wet etch methods for InAs nanowire patterning and self-aligned electrical contacts
Advanced synthesis of semiconductor nanowires (NWs) enables their application
in diverse fields, notably in chemical and electrical sensing, photovoltaics,
or quantum electronic devices. In particular, Indium Arsenide (InAs) NWs are an
ideal platform for quantum devices, e.g. they may host topological Majorana
states. While the synthesis has been continously perfected, only few techniques
were developed to tailor individual NWs after growth. Here we present three wet
chemical etch methods for the post-growth morphological engineering of InAs NWs
on the sub-100 nm scale. The first two methods allow the formation of
self-aligned electrical contacts to etched NWs, while the third method results
in conical shaped NW profiles ideal for creating smooth electrical potential
gradients and shallow barriers. Low temperature experiments show that NWs with
etched segments have stable transport characteristics and can serve as building
blocks of quantum electronic devices. As an example we report the formation of
a single electrically stable quantum dot between two etched NW segments.Comment: 9 pages, 5 figure
Local electrical tuning of the nonlocal signals in a Cooper pair splitter
A Cooper pair splitter consists of a central superconducting contact, S, from
which electrons are injected into two parallel, spatially separated quantum
dots (QDs). This geometry and electron interactions can lead to correlated
electrical currents due to the spatial separation of spin-singlet Cooper pairs
from S. We present experiments on such a device with a series of bottom gates,
which allows for spatially resolved tuning of the tunnel couplings between the
QDs and the electrical contacts and between the QDs. Our main findings are
gate-induced transitions between positive conductance correlation in the QDs
due to Cooper pair splitting and negative correlations due to QD dynamics.
Using a semi-classical rate equation model we show that the experimental
findings are consistent with in-situ electrical tuning of the local and
nonlocal quantum transport processes. In particular, we illustrate how the
competition between Cooper pair splitting and local processes can be optimized
in such hybrid nanostructures.Comment: 9 pages, 6 figures, 2 table
Nanoscale spin-polarization in dilute magnetic semiconductor (In,Mn)Sb
Results of point contact Andreev reflection (PCAR) experiments on (In,Mn)Sb
are presented and analyzed in terms of current models of charge conversion at a
superconductor-ferromagnet interface. We investigate the influence of surface
transparency, and study the crossover from ballistic to diffusive transport
regime as contact size is varied. Application of a Nb tip to a (In,Mn)Sb sample
with Curie temperature Tc of 5.4 K allowed the determination of
spin-polarization when the ferromagnetic phase transition temperature is
crossed. We find a striking difference between the temperature dependence of
the local spin polarization and of the macroscopic magnetization, and
demonstrate that nanoscale clusters with magnetization close to the saturated
value are present even well above the magnetic phase transition temperature.Comment: 4 page
Magnetic field tuning and quantum interference in a Cooper pair splitter
Cooper pair splitting (CPS) is a process in which the electrons of naturally
occurring spin-singlet pairs in a superconductor are spatially separated using
two quantum dots. Here we investigate the evolution of the conductance
correlations in an InAs CPS device in the presence of an external magnetic
field. In our experiments the gate dependence of the signal that depends on
both quantum dots continuously evolves from a slightly asymmetric Lorentzian to
a strongly asymmetric Fano-type resonance with increasing field. These
experiments can be understood in a simple three - site model, which shows that
the nonlocal CPS leads to symmetric line shapes, while the local transport
processes can exhibit an asymmetric shape due to quantum interference. These
findings demonstrate that the electrons from a Cooper pair splitter can
propagate coherently after their emission from the superconductor and how a
magnetic field can be used to optimize the performance of a CPS device. In
addition, the model calculations suggest that the estimate of the CPS
efficiency in the experiments is a lower bound for the actual efficiency.Comment: 5 pages + 4 pages supplementary informatio
- …