92 research outputs found

    Photoabsorption In Carbon Monoxide: Stieltjes-tchebycheff Calculations In The Separated-channel Static-exchange Approximation

    Get PDF
    Theoretical investigations of total and partial-channel photoabsorption cross sections in carbon monoxide are reported employing the Stieltjes-Tchebycheff (S-T) technique and separated-channel static-exchange calculations. Pseudospectra of discrete transition frequencies and oscillator strengths appropriate for individual excitations of each of the six occupied molecular orbitals are constructed using Hartree-Fock core functions and normalizable Gaussian orbitals to describe the photoexcited and ejected electrons. Use of relatively large basis sets of compact and diffuse functions insures the presence of appropriate discrete Rydberg states in the calculations and provides sufficiently dense pseudospectra for the determination of convergent photoionization cross sections from the S-T technique. The calculated discrete vertical electronic excitation spectra are in very good agreement with measured band positions and intensities, and the partial-channel photoionization cross sections are in correspondingly good accord with recent electron-electron (e,2e) coincidence, synchrotron-radiation, and line-source branching-ratio measurements. Predicted resonance features in the X, B, O2s -1, and carbon K-shell channels are in particularly good agreement with the positions and intensities in the measured cross sections. A modest discrepancy between experiment and theory in the A-channel cross section is tentatively attributed to channel-coupling mechanisms associated with opening of the 1π shell. The total vertical electronic S-T photoionization cross section for parent-ion production is in excellent agreement with recent electron-ion coincidence measurements. Comparisons are made between ionization processes in carbon monoxide and in the previously studied nitrogen molecule, and similarities and differences in the respective cross sections are clarified in terms of conventional molecular-orbital theory. © 1978 American Institute of Physics.6972992300

    Photoexcitation And Ionization In Ozone: Stieltjes-tchebycheff Studies In The Separated-channel Static-exchange Approximation

    Get PDF
    Theoretical studies are reported of total and partial-channel photoexcitation/ionization cross sections in ozone employing Stieltjes-Tchebycheff (S-T) techniques and the separated-channel static-exchange approximation. As in previously reported investigations of excitation and ionization spectra in diatomic and polyatomic molecules employing this approach, vertical electronic dipole transition spectra for the twelve occupied canonical Hartree-Fock symmetry orbitals in ozone are constructed using large Gaussian basis sets, appropriate computational methods, and noncentral static-exchange potentials of correct molecular symmetry. Experimental rather than Koopmans ionization potentials are employed when available in construction of transition energies to avoid the incorrect ionic-state orderings predicted by Hartree-Fock theory, and to insure that the calculated series have the appropriate limits. The spectral characteristics of the resulting improved-virtual-orbital discrete excitation series and corresponding static-exchange photoionization continua are interpreted in terms of contributions from valencelike 7a 1(σ*), 2b1(πx*), and 5b2(σ*) virtual orbitals, and appropriate diffuse Rydberg functions. The 2b1(πx*) valence orbital apparently contributes primarily to discrete or autoionizing spectra, whereas the 7a1(σ*) and 5b2(σ*) orbitals generally appear in the various photoionization continua. Moreover, there is also evidence of strong 2p→kd atomiclike contributions to ka2 final-state channels in the photoionization continua. The calculated outer-valence-shell 6a1, 4b2, and 1a2 excitation series are compared with electron impact-excitation spectra in the 9 to 13 eV interval, and the corresponding partial-channel photoionization cross sections are contrasted and compared with the results of previously reported studies of photoionization in molecular oxygen. The intermediate- and inner-valence-shell excitation series and corresponding photoionization cross sections are in general accord with quantum-defect estimates and with the measured electron-impact spectra, which are generally unstructured above ∼22 eV. Of particular interest in the intermediate-valence-shell spectra is the appearance of a strong σ→σ* feature just above threshold in the 3b2→kb2 photoionization cross section, in qualitative agreement with previously reported studies of the closely related 3σg→kσu cross section in molecular oxygen. Finally, qualitative comparisons are made of the calculated K-edge excitation and ionization spectra in ozone with recently reported photoabsorption studies in molecular oxygen. © 1981 American Institute of Physics.7484581459

    Elastic electron scattering by laser-excited 138Ba( ... 6s6p 1P1) atoms

    Get PDF
    The results of a joint experimental and theoretical study concerning elastic electron scattering by laser-excited 138Ba( ... 6s6p 1P1) atoms are described. These studies demonstrate several important aspects of elastic electron collisions with coherently excited atoms, and are the first such studies. From the measurements, collision and coherence parameters, as well as cross sections associated with an atomic ensemble prepared with an arbitrary in-plane laser geometry and linear polarization (with respect to the collision frame), or equivalently with any magnetic sublevel superposition, have been obtained at 20 eV impact energy and at 10°, 15° and 20° scattering angles. The convergent close-coupling (CCC) method was used within the non-relativistic LS-coupling framework to calculate the magnetic sublevel scattering amplitudes. From these amplitudes all the parameters and cross sections at 20 eV impact energy were extracted in the full angular range in 1° steps. The experimental and theoretical results were found to be in good agreement, indicating that the CCC method can be reliably applied to elastic scattering by 138Ba( ... 6s6p 1P1) atoms, and possibly to other heavy elements when spin-orbit coupling effects are negligible. Small but significant asymmetry was observed in the cross sections for scattering to the left and to the right. It was also found that elastic electron scattering by the initially isotropic atomic ensemble resulted in the creation of significant alignment. As a byproduct of the present studies, elastic scattering cross sections for metastable 138Ba atoms were also obtained

    Photoabsorption in carbon monoxide: Stieltjes–Tchebycheff calculations in the separated-channel static-exchange approximation

    Get PDF
    Theoretical investigations of total and partial-channel photoabsorption cross sections in carbon monoxide are reported employing the Stieltjes–Tchebycheff (S–T) technique and separated-channel static-exchange calculations. Pseudospectra of discrete transition frequencies and oscillator strengths appropriate for individual excitations of each of the six occupied molecular orbitals are constructed using Hartree–Fock core functions and normalizable Gaussian orbitals to describe the photoexcited and ejected electrons. Use of relatively large basis sets of compact and diffuse functions insures the presence of appropriate discrete Rydberg states in the calculations and provides sufficiently dense pseudospectra for the determination of convergent photoionization cross sections from the S–T technique. The calculated discrete vertical electronic excitation spectra are in very good agreement with measured band positions and intensities, and the partial-channel photoionization cross sections are in correspondingly good accord with recent electron–electron (e,2e) coincidence, synchrotron-radiation, and line-source branching-ratio measurements. Predicted resonance features in the X, B, O2s−1, and carbon K-shell channels are in particularly good agreement with the positions and intensities in the measured cross sections. A modest discrepancy between experiment and theory in the A-channel cross section is tentatively attributed to channel-coupling mechanisms associated with opening of the 1pi shell. The total vertical electronic S–T photoionization cross section for parent-ion production is in excellent agreement with recent electron–ion coincidence measurements. Comparisons are made between ionization processes in carbon monoxide and in the previously studied nitrogen molecule, and similarities and differences in the respective cross sections are clarified in terms of conventional molecular-orbital theory

    Photoexcitation and ionization in ozone: Stieltjes–Tchebycheff studies in the separated-channel static-exchange approximation

    Get PDF
    Theoretical studies are reported of total and partial-channel photoexcitation/ionization cross sections in ozone employing Stieltjes–Tchebycheff (S–T) techniques and the separated-channel static-exchange approximation. As in previously reported investigations of excitation and ionization spectra in diatomic and polyatomic molecules employing this approach, vertical electronic dipole transition spectra for the twelve occupied canonical Hartree–Fock symmetry orbitals in ozone are constructed using large Gaussian basis sets, appropriate computational methods, and noncentral static-exchange potentials of correct molecular symmetry. Experimental rather than Koopmans ionization potentials are employed when available in construction of transition energies to avoid the incorrect ionic-state orderings predicted by Hartree–Fock theory, and to insure that the calculated series have the appropriate limits. The spectral characteristics of the resulting improved-virtual-orbital discrete excitation series and corresponding static-exchange photoionization continua are interpreted in terms of contributions from valencelike 7a1(sigma*), 2b1(pix*), and 5b2(sigma*) virtual orbitals, and appropriate diffuse Rydberg functions. The 2b1(pix*) valence orbital apparently contributes primarily to discrete or autoionizing spectra, whereas the 7a1(sigma*) and 5b2(sigma*) orbitals generally appear in the various photoionization continua. Moreover, there is also evidence of strong 2p-->kd atomiclike contributions to ka2 final-state channels in the photoionization continua. The calculated outer-valence-shell 6a1, 4b2, and 1a2 excitation series are compared with electron impact–excitation spectra in the 9 to 13 eV interval, and the corresponding partial-channel photoionization cross sections are contrasted and compared with the results of previously reported studies of photoionization in molecular oxygen. The intermediate- and inner-valence-shell excitation series and corresponding photoionization cross sections are in general accord with quantum-defect estimates and with the measured electron-impact spectra, which are generally unstructured above ~22 eV. Of particular interest in the intermediate-valence-shell spectra is the appearance of a strong sigma-->sigma* feature just above threshold in the 3b2-->kb2 photoionization cross section, in qualitative agreement with previously reported studies of the closely related 3sigmag-->ksigmau cross section in molecular oxygen. Finally, qualitative comparisons are made of the calculated K-edge excitation and ionization spectra in ozone with recently reported photoabsorption studies in molecular oxygen

    MANY-BODY THEORY OF ELECTRON-SCATTERING BY EXCITED ATOMIC TARGETS - FUNDAMENTAL FORMULAS

    Get PDF
    A many-body theory of electron-impact excitation out of excited atomic states is presented. After the fundamental equations and formulas of the general theory are given, first- and second-order approximations are introduced. In the case of the first-order theory, detailed analytical formulas are also developed. The physical interpretation of the first- and second-order theories are presented with the aid of Feynman-type diagrams. Following a discussion of initial- and final-state effects, the many-body theory is also related to the distorted-wave approximation.4842811282

    Photoexcitation And Ionization In Carbon Dioxide: Theoretical Studies In The Separated-channel Static-exchange Approximation

    Get PDF
    Theoretical studies are reported of total and partial-channel photoexcitation and ionization cross sections in carbon dioxide. As in previously reported studies of discrete and continuum dipole spectra in diatomic (N2, CO, O2, F2) and polyatomic (H2O, H2CO, O3) molecules in this series, separated-channel static-exchange calculations of vertical-electronic transition energies and oscillator strengths and Stieltjes-Tchebycheff moment methods are employed in the development. Detailed comparisons are made of the static-exchange excitation and ionization spectra with photoabsorption, electron-impact excitation, and quantum-defect estimates of discrete transition energies and intensities, and with partial-channel photoionization cross sections obtained from fluorescence measurements and from tunable-source and (e,2e) photoelectron spectroscopy. The spectral characteristics of the various discrete series and continua are interpreted in terms of contributions from compact 2u(*), 5g(*), and 4u(*) virtual valence orbitals, and from more diffuse discrete and continuum Rydberg orbitals. The 2u(*) orbital is found to contribute to discrete excitation series, whereas the 5g (*) and 4u (*) orbitals generally appear in the photoionization continua as resonancelike diabatic valence features. Good agreement obtains between the calculated discrete excitation series and the results of a recent analysis of the available spectroscopic data. The calculated outer-valence-shell (1g-1)Xg2, (1u-1)A u2, (3u-1)B u+2, and (4g-1)C g+2 partial-channel photoionization cross sections are in good accord with measured values, and clarify completely the origins of the various structures in the observed spectra. There is evidence, however, of coupling among scattering states associated with 1g-1 and 1u-1 ionic channels, giving rise to moderate disagreement with tunable-source photoelectron and fluorescence measurements over a portion of the spectrum. In the inner-valence-shell region, the calculated 2u-1 and 3g-1 cross sections are in qualitative accord with the observed many-electron spectral intensities, and provide a basis for quantitative interpretation when combined with appropriate intensity-borrowing calculations. The calculated carbon and oxygen K-edge cross sections are in good agreement with available cross sections obtained from electron-impact and photoabsorption measurements. It is of particular interest to find the oxygen K-edge (1g-1, 1u-1) cross section exhibits both the expected 5g(*) and 4u(*) resonancelike features. Finally, comparisons are made throughout of the discrete and continuum spectra in carbon dioxide with the results of previously reported studies in CO and O2, and the origins of the similarities and differences in the cross sections in these cases are clarified. © 1981 The American Physical Society.23121823
    • …
    corecore