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ABSTRACT 

Two models have been developed to simulate a vertical-cavity surface-emitting laser (VCSEL). 
The first model is a two-dimensional time-dependent solution of Maxwell's equations, with 
frequency-independent bulk dielectric and absorption coefficients. These bulk coefficients 
depend upon the material, lattice temperature, and carrier concentration. This field model is 
coupled with a frequency-dependent gain model that describes the quantum well regions in the 
time domain. Treatment of frequency-dependent media in a finite-difference time-domain code is 
computationally intensive. On the other hand, because the volume of the active region is small 
relative to the volume of the distributed laser cavity, the computational overhead is reasonable. A 
semi-empirical transport model is used to describe the bulk transport, which drives the quantum 
well transport. In addition, the semi-empirical model provides a spatial distribution for the lattice 
temperature and carrier concentrations. The second model is a three-dimensional solution of 
Maxwell's equations. The three-dimensional model can be used for cold-cavity calculations. The 
two-dimensional code generates the dielectric and absorption coefficients assuming azimuthal 
symmetry, providing the initial conditions for the three-dimensional calculation. 

1. INTRODUCTION 

The VCSEL exhibits a strong variation in the index of refraction along the direction of propagation. As 
such, the propagation direction must be included to accurately simulate a VCSEL. Consequently, the 
VCSEL requires a three-dimensional field simulation to obtain an accurate intensity distribution within 
the laser cavity. Moreover, since the strong variation in the index of refraction occurs with a length scale 
less than the laser wavelength, most of the standard laser approximations are not valid for this device. 
Thus, Maxwell's equations must be solved in a complicated geometry with various boundary conditions. 

Our goal was to develop a fairly complete quantum well laser model that attempts to take into account 
all important physical effects. As a result, the VCSEL laser model must combine three coupled systems: 
Maxwell's equations, the optical Bloch equations (OBE), and bulk transport equations. Because of the 
computational overhead associated with a full three-dimensional code, we first developed a two- 
dimensional model as a testbed for a three-dimensional model. Besides acting as a testbed, the two- 
dimensional code should be useful as a preliminary scoping code. As a result, we have compared the 
two-dimensional code against a reference VCSEL device. 1 

The reference VCSEL was designed to operate at 9800 A. However, just above threshold, the device 
actually operates at 9335 A. As the injection current increases, the mean wavelength of the device 
increases, and the number of excited transverse modes increases from one to a maximum of six. 
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The transverse mode separation remains about 10 A, independent of the injection current. The intensity 
pattern starts as a Gaussian-like distribution, evolves into a donut-like pattern, to higher 1 f 0 modes, 
and then into filaments. 

A deficiency in two-dimensional model comparison with the reference design is the lack of a bulk 
transport model. The original intent was to use a heterostructure version of PISCES that would provide 
the bulk solution for the electron concentration, hole concentration, and lattice temperature.2 Since the 
transport and Maxwell-OBE algorithms are solved on a somewhat different mesh, a transformation 
scheme based upon the gather-scatter algorithms used in particle-in-cell plasma simulation codes was 
constructed to connect transport and field-gain algorithms. The basic assumption behind the 
transformation was that the electron and hole concentrations would be smooth functions in space. 
Unfortunately, this assumption proved to be incorrect, and the integration of the transport model to the 
field-gain model failed. As a result, the field-gain code utilizes a semi-empirical solution to connect the 
electron and hole concentrations with the lattice temperature. The longituclinal and transverse profiles for 
the concentrations and temperature are approximations gleaned from the PISCES solutions. This 
relationship clearly impacts the details of the simulation, but the two-dimensional simulation was 
expected to predict the basic trends, or scaling, of the reference VCSEL. 

The comparison between the two-dimensional model and the reference VCSEL led to a number of 
inconsistent results. The most severe problem is that the predicted wavelength is 9850 A, whereas the 
VCSEL operates at 9335 A. For a laser, this is a huge error. Moreover, even if the cold cavity in the 
simulation is modified to match the experimental data, there is insufficient gain at 9335 A to achieve 
startup. As a result, we cannot reconcile the modified simulation with the experimental data unless the 
energy gap for a strained-light-hole InXGal-,As quantum well 3 or the bandgap renormalization 4 is 
significantly in error. Another problem is that the two-dimensional model does not predict multiple 
modes, except when the laser intensity is sufficiently large to induce spatial hole burning. With spatial 
hole burning present, two modes separated by about 12 A do appear in the intensity pattern. The first 
mode is Gaussian-like and the second mode is donut-like. Our conclusion is that the mode separation 
seen in the VCSEL is a dynamic effect, caused by spatial hole burning, rather than a cold-cavity effect. 

These discrepancies between the two-dimensional model and the VCSEL data led to criticism against 
the two-dimensional field solver. As a result, we re-evaluated the utility of a three-dimensional model. It 
is not practical to solve a full three-dimensional coupled field-gain-transport model on a workstation. 
However, it is possible to solve the three-dimensional cold-cavity calculation on a workstation. A cold- 
cavity calculation determines the normal modes of a distributed VCSEL laser cavity with spatial 
variation in the dielectric and absorption coefficients, without a self-consistent active media model. So, 
rather than continue the development of the two-dimensional model, we developed a full three- 
dimensional cold-cavity model. The basic algorithm is the standard leap-frog used to solve Maxwell's 
equations? but the equations are solved with a metric formulation to treat different coordinate systems. 

The interesting aspect of the three-dimensional cold-cavity code is that tlie algorithm was implemented 
with a new technique based upon the Universal Interface (UI). The UI was developed in C++ upon a 
universal object called a fragment, which is a variable capable of representing all entities used in 
computing. The data structure, arithmetic functions, and I/O are all part of the fragment class interface. 
This universal structure enables code development to be accomplished simply as the direct 
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implementation of the equations in n-dimensional form. Boundary conditions were implemented for 
transmitting, periodic, and metallic boundaries. Field sources and material dielectric variations for the 
laser were implemented as a choice of point, distributed Gaussian, or eigenfunction solutions for a metal 
cavity. 

The C++ functions describing the algorithm are simply hooked to the 'LJI and run without change on 
machines of widely variable architecture and operating systems. The code has been run on Mac 
PowerBook540C, SUN4, HP735, IBM590 and CRAY-YMP platforms. The amount of code written is 
remarkably small and can be printed on three pages. Moreover, the performance of the code is excellent. 
The fragment solutions of Maxwell's equations run at a grind time of 0.23 psec/ceU/cycle and at a rate 
greater than 200 megaflops on the CRAY-YMP for three-dimensional problems. 

The three-dimensional cold-cavity simulation for the reference VCSEL predicts a wavelength of about 
9800 A, consistent with the two-dimensional simulation. In addition, there is no evidence of higher order 
modes in the cold cavity. Thus, we are unable to explain the experimental data with either the two- or 
three-dimensional model. At this point, it is not clear if 1) the material coefficients are significantly 
incorrect, 2) some unknown physical effect is present in the experiment, or 3) the experimental data is 
incorrect. 

In Sec. 2, a brief description of the reference VCSEL configuration is presented and the semi-empirical 
model connecting the lattice temperature and the carrier concentration is discussed. In Sec. 3, a brief 
description of the dielectric constant is given, including the modification due to lattice temperature and 
carrier concentration. In Sec. 4, the basic equations solved in the two-dimensional model are presented. 
In Sec. 5, some two-dimensional and three-dimensional results are presented. 

2. CONFIGURATION AND SEMI-EMPIRICAL TRANSPORT MODEL 

The two-dimensional simulation configuration for the reference VCSEL device is shown in Fig. 1. For 
this reference case, there are 80 regions along the z-direction, made up of 7 different materials. Along 
the x-axis, there are three major regions, separated by the horizontal lines shown in the figure. Only the 
center region contains active quantum wells; the positions of the quantum wells are indicated by the dark 
layer located about four-tenths of the distance along the z-axis. Both the lower and upper regions have 
increased absorption in the area around the quantum well region due to ion implantation, which 
effectively renders the quantum well layers inert. In the center region, the left-hand boundary is a metal, 
whereas in the lower and upper regions the left-hand boundary is a dielectric. 

Starting from the left-hand boundary, there are a metal/dielectric layer, a phase matching layer, a 30- 
layer multi-layer-dielectric mirror, a cladding layer, three quantum well layers separated by four barrier 
layers, another cladding layer, a 37-layer multi-layer-dielectric mirror, a contact layer, and a coating 
layer. Although the longitudinal and transverse mesh sizes differ, both are uniform in space along either 
the longitudinal or transverse direction. Because this calculation uses a uniform mesh, it is necessary to 
slightly modify the index of refraction of some of the materials by a few percent. In addition, the 
transverse dimension of the simulation is much smaller than in an actual device, the simulation being 
limited to regions where the electric displacement is large. Except for these two assumptions, the 
simulation geometry is a very good representation of the actual reference VCSEL device. 
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A semi-empirical model is used to connect the electron and hole concentrations with the lattice 
temperature. This semi-empirical relationship is shown in Fig. 2. In the figure, the line starting at 300 K 
and with the smaller slope is the lattice temperature. In the experiment, startup occurs at 3.8 V. This 
relationship impacts the details of the simulation. For example, if the carrier concentration is too low for 
the specified lattice temperature, startup is more difficult, the predicted wavelength is too low, and the 
rate of change of wavelength with voltage is too high. 

3. INDEX OF REFRACTION MODEL 

In the formulation of the field-gain model, one of the most fundamental assumptions concerns the bulk 
index of refraction. Although the active regions must be treated as a frequency dependent medium in the 
time domain, the model can be significantly simplified provided that the bulk index of refraction can be 
treated as frequency independent. The justification for this approximation is shown in Fig. 3, where the 
index of refraction of AIAs, A I o . ~ G ~ ~ ~ A s ,  and GaAs are given as functions of wavelength.6 AlAs has 
the lowest index of refraction. Now, the bandwidth of the laser is roughly given by the collisional 
dephasing time, which is AI, = 0.3 pm. Referring to the figure, the change in the bulk index of 
refraction over this range is quite small. Thus, the bulk index of refraction is assumed to be frequency 
independent. In addition, the bulk absorption coefficient is assumed to be frequency independent. 

Even though the bulk index of refraction is frequency independent, the index must be chosen to match 
the wavelength of operation of the device. Since the change in the index of refraction with wavelength is 
small, we make an initial guess for the operation wavelength, calculate the index from a semi-empirical 
model, and then perform a short calculation to determine the longitudinal mode wavelength. Based upon 
the calculation, the index is then modified slightly to provide an improved match. 

For the reference VCSEL design, the bulk index of refraction is shown in Fig. 4. The data corresponds to 
a slice along the axis of the simulation. At the left-hand boundary, the zero index of refraction 
corresponds to a metal region. The wavelength varies significantly throughout the laser as the index of 
refraction varies over just a few wavelengths. This rapid variation in the index of refraction along the 
axis of the device implies that Maxwell's equations must be solved to obtain the field solution. 

In addition to the variation of the bulk index of refraction, the index of refraction is slightly modified by 
the lattice temperature and carrier concentration. This modification is typically small. For example, near 
threshold, the contribution to the dielectric constant due to temperature and concentration is shown in 
Fig. 5. Again, the data corresponds to a slice along the axis of the simulation. 

Combining the bulk, temperature, and carrier contributions, the dielectric constant is given by 

where nbU, is the material index of refraction, ptemP is the thermal coefficient for the index of refraction, 
and %den is the carrier concentration susceptibility. The carrier susceptibility is given by 
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Fig. 3. Semi-emphical index of refraction for GaAs, &~.2Gao8As, and U s .  
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Fig. 4. Material contribution to the dielectric constant along the axis of the VCSEL. 



in the bulk regions, and by 

in the quantum well regions. Here, we is the plasma frequency calculated with a reduced mass, wgap is 
the bandgap frequency, and w is the laser frequency. Note that > 0 and that xden < 0, since wgap < 
w . Thus, the change of index of refraction with temperature and concentration oppose one another. 
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Fig. 5. Lattice temperature and carrier density modification to the dielectric constant along a slice down 
the axis of the VCSEL. 

4. DIMENSIONLESS TWO-DIMENSIONAL MODEL EQUATIONS 

Maxwell's equations are 

- -VxE 
aB 
dt 
-- 

and 

dD dP - = V x B - CXD + -, 
dt dt 

(4) 

(5) 

where D = q,n2E, n is the frequency-independent bulk index of refraction, a is the frequency- 
independent absorption coefficient, and P is the polarization vector associated with the active quantum 
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well regions. The polarization is related to the sine-like, P, , and cosine-like, Pc, scalar polarization 
components, the time-dependent transition frequency 0, (t), the dephasing collision frequency yk , and 
the dipole matrix element d, 

The scalar polarization components evolve according to 

and 

V1 
4 = 2Q -Dn,I'(k) - y,P, + w,(t)P,, 
at 

where Q is the Rabi frequency, nh is the hole concentration, and T(k)  is the fraction of the electron- 
hole pairs that contribute to the interaction. The quantity T(k)  is determined from an integration over 
k-space using Fermi-Dirac statistics. Here, k refers to the effective wave energy above the bandedge, 
determined from the difference between the transition frequency and the bandgap frequency. The 
bandgap frequency is calculated from a strained-quantum-well energy gap model, modified by lattice 
temperature, finite quantum well, and renormalization contributions. The time-dependent transition 
frequency, w, (t) ,  is determined self-consistently from solution of Maxwell's equations. 

Finally, the quantum well transport is given by 

and 

where J, and J, are the electron and hole current densities, respectively, and ynr is a concentration 
dependent loss term associated with nonradiative recombination and spontaneous emission. The bulk 
electron and hole contributions drive the longitudinal part of the divergence, JJ / 32, while the 
transverse part of the divergence, JJ / a x ,  leads to diffusion within the quantum well. 

5. TWO-DIMENSIONAL AND THREE-DIMENSIONAL RESULTS 

5.1. Two-dimensional results 

The dependence of wavelength on lattice temperature is shown in Fig. 6. In the figure, simulation results 
are indicated by squares and experimental results by circles. The line passing through each data set is a 
linear fit used to determine the slope. First, the slope of both curves is positive, indicating that the 
change in the dielectric constant due to lattice temperature is dominating the change due to carrier 
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Fig. 6.  Comparison of simulation and experimental wavelengths as a function of lattice temperature. 

For conditions near threshold, the calculated gain for the reference VCSEL is given as a function of 
energy above the bandedge, see Fig. 7. Starting from the left, the three mows indicate the position in 
energy space associated with 1) the reference configuration without bandgap renormalization, 2) the 
reference configuration with bandgap renormalization, and 3) a modified reference configuration forced 
to match the experiment. The first case starts up and saturates at a power level consistent with the 
experiment. The second case exhibits a very marginal startup and the saturated power is very small 
compared with the experiment. Finally, the third case, which corresponds to the experimental 
wavelength, is very far from startup. In short, even if we force the simulation to match the experimental 
wavelength, there is insufficient gain to ever start up, unless the strained-quantum-well-bandgap model 3 
is significantly in error. 

Finally, in Fig. 8, the Fourier transform of the electric field is shown over three different time intervals. 
The simulation corresponds to a drive condition significantly above threshold. Early in time (bottom 
curve) there is a single peak corresponding to a cold-cavity situation. Later in time (middle curve) the 
field has grown to sufficient amplitude to cause a phase shift to shorter wavelength. After saturation (top 
curve) two modes appear with a separation of 12 A. The mode separation appears only after significant 
spatial hole burning appears. The predicted separation is in good agreement with the 10 A seen in the 
experiment. 
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5.2. Three-dimensional results 

As a test problem, we simulated a dielectric-filled metal box of length 6.75 pm, with equal transverse 
dimensions ranging from 2 pm to 8 p. This problem has an analytic solution, and the effects of zoning 
are easily investigated. If the field solver is driven with both the correct eigenfunction and 
eigenfrequency, the simulation and analytic solution agree to within about 0.5%, provided there are 10 
or more cells per wavelength. For the basic eigenfunctions, the separation between the eigenfiequencies 
is not constant. 

A more interesting solution is obtained when the field solver is driven with an azimuthally-symmetric 
Gaussian-like source. In this case, we observe a number of equally spaced modes, the number of modes 
limited by the zoning of a particular simulation. For example, the Fourier transform of a simulation with 
a transverse dimension of 4 pm is shown in Fig. 9. 

It is straight-forward to calculate that the mode spacing is about 35 A for this case. If the three- 
dimensional system is driven at the fiequency of one the peaks in the Fourier spectrum, it is possible to 
isolate a single pure mode. For example, driving at the frequency of the third mode shown in Fig. 9, 
produces the intensity pattern displayed in Fig. 10. The four bright spots in the pattern correspond to an 
L = 4 mode. 
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Fig. 9. Fourier transform of the electric field near the center of the metal box, showing five equally- 
spaced modes. 
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Fig. 10. The third mode intensity pattern perpendicular to the axis of the box. 

We find the mode spacing obeys L2A@ = constant , where L is the transverse dimension of the box. At 
L = 8 pm, the mode spacing is less than 10 A. Thus, we are able to observe transverse modes down to 
the level seen in the experiment. However, the scaling of the mode separation is not consistent with the 
experimental results, in which LAO = constant. In the experiment, L is the diameter of the gain region. 
Because of the difference in scaling, we do not believe that the mode spacing seen in the experiment is 
due to a radial boundary effect, but is consistent with spatial hole burning. 
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