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Many-body theory of electron scattering by excited atomic targets: Fundamental formulas
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A many-body theory of electron-impact excitation out of excited atomic states is presented. After the
fundamental equations and formulas of the general theory are given, first- and second-order approxima-
tions are introduced. In the case of the first-order theory, detailed analytical formulas are also
developed. The physical interpretation of the first- and second-order theories are presented with the aid
of Feynman-type diagrams. Following a discussion of initial- and final-state effects, the many-body
theory is also related to the distorted-wave approximation.

PACS number(s): 34.80.Dp

I. INTRODUCTION

The study of electronic collisions with excited atomic
targets is of great importance for the understanding of
high-density gas discharges [1], of astrophysical plasmas
[2], of ionospheric and auroral processes in planetary at-
mospheres [3], and of electron-beam and gas-discharged
pumped lasers [4]. In spite of its great importance, rela-
tive few experimental and theoretical studies have been
reported in the literature in this area. Massey and
Burhop [5] in their monograph refer to a few experiments
prior to 1969: that of Latyscheff and Leipunsky [6] on
metastable Hg targets, that of Phelps [7] on He(2 S) tar-
gets, and that of Neynaber et al. [8] on He(2 S) targets.
Since then, additional experimental results were reported
by Wilson and Williams [9] on total cross sections for
He(2 S) and He(2'S) targets; Lake and Garscadden [10]
measured the 2 S~3 P excitation cross section for He;
Mityureva and Penkin [11] measured optical excitation
functions for the 2 S~3 P transition in He and for the
3 Po 2~4 iP& line in Ne; Gostev et al. [12] measured op-
tical excitation functions out of the 2 S level of He to
higher-lying levels; and Celotta et al. [13] measured the
total cross section for scattering of low-energy electrons
by a mixture of Po and P2 metastable Ar. Most impor-
tantly, however, Miiller-Fiedler et al. [14] reported
differential cross-section (DCS) results for the excitation
out of the He(2 S) level to the 2 P, 3 S, 3 P, and 3 D
levels, and to the sum of the n =4 levels of He. Recently
optical excitation functions have been reported by Rail
et al. [15] for tra. nsitions from He(2 S) to seven higher-
lying states. From their optical excitation data, these
latter authors [15] have also obtained electron-impact in-
tegrated cross-section results for the 2 S~3 P, 3 S, and
3 D transitions. Additional experimental studies on
electron-impact excitation from metastable states of rare
gases include that of Gerasimov and Petrov [16], Shaw
and Jones [17], Baranov, Demidov, and Kolokolov [18],
Bochkova and Moritts [19],Blagoev, Mishanov, and Po-
pov [20], and Behnke, Deutsch, and Scheibner [21].

These latter works study the properties of after-glow
plasmas and obtain information (usually rate coefficients)
about a variety of electron-impact processes.

The experimental technique of electron scattering by
laser-excited atomic targets, introduced in 1974 by Hertel
and Stall [22], opened new possibilities for the study of
electron-impact excitation out of excited atomic targets.
Hertel and co-workers [23] applied this technique to
study electron-impact processes for laser-pumped Na tar-
gets. Register et al. [24] used the same technique to mea-
sure DCS's for numerous transitions from the 6 P& level
of Ba, and Jaduszilwer et al. [25 —27] and Zuo et al. [28]
used it to study electron scattering by various excited
states of Na. A recent development in this area is the use
of spin-polarized incident electrons for the study of su-
perelastic scattering from a laser-excited Na target
[29—31].

On the theoretical side the situation is somewhat
better. The majority of calculations refer to excitations
out of the 2 S level of He. These calculations include the
Born approximation [1,32—39], the Bonham-Ochkur-
Rudge approximation [40], the Glauber approximation
[38,41], the Vainshtein-Presnyakov-Sobelman approxima-
tion [1], the use of the multichannel eikonal approach
[42—44], the polarized-orbital approximation for elastic
scattering [45—47], the distorted-wave approximation
(DWA) [48,49], the two-potential modified Born approxi-
mation [50,51], the close-coupling approximation
[52—54], the Bethe-Goldstone variational approach [55],
and R-matrix theory calculations [56—58]. Recently a
computer code was developed by Clark et al. [59] that al-
lows the calculation of electron-impact cross sections in
various versions of the DWA for a great variety of atom-
ic and ionic systems. Results from this computer code
for a variety of transitions in Ar and Kr were published
recently [60].

The limitations of the Born, Glauber, and multichannel
eikonal methods are well known and discussed by the
respective authors. The major problem with these
methods is that they are not able to describe spin-
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exchange excitation properly, and consequently they will
not be able to provide reliable results for the DCS at large
angles (approximately for 8 )90 ) and for transitions that
occur through spin exchange (e.g., for the 2 S~3 'P ex-
citation of He). The R-matrix method is able to over-
come these problems; however, in the past, except for the
five-state R-matrix theory, it has been implemented only
for low-energy (E ~ 30 eV) incident electrons.

Thus it appeared to be worthwhile to formulate the
many-body theory of electron scattering by excited atom-
ic targets with closed-shell ground states. The many-
body theory of elastic electron scattering by closed-shell
ground-state atomic targets was formulated by Bell and
Squires [61] and Namiki [62], it was first applied for e-He
elastic scattering by Pu and Chang [63]. The application
of the Martin-Schwinger functional differentiation for-
malism [64,65] in this context was suggested by Schneid-
er, Taylor, and Yaris [66], which was used in a numerical
calculation for e-He scattering by Yarlagadda et al. [67].
The many-body theory of electron-atom inelastic scatter-
ing out of closed-shell targets was formulated by Csanak,
Taylor, and Yaris [68,69] and by Emrich [70]. The first-
order version of the many-body theory (FOMBT)
was applied for electron-impact excitation of He [71—74],
Ar [75,76], Ne [77,78], Kr [79], and Mg [80]. A second-
order many-body theory (SOMBT) for inelastic scattering
was formulated by Csanak, Taylor, and Tripathy [81]
that gave promising results [82] for the 2 S excitation of
He. A many-body theory for excitations out of excited
states was formulated by Ficocelli Varracchio [83], but
results from this theory have not been reported yet.

The purpose of the present work is to extend many-
body theory for the electron-impact excitation of excited
atomic targets with closed-shell ground states. The first-
and second-order versions of the theory will also be
presented. The many-body theory will be related to the
DWA and the first-order theory will be applied in a sub-
sequent work for electron-impact excitation out of the
2 S and 2'S levels of He. The term scheme of He and
the two levels of interest to us here are shown in Fig. 1.

II. FUNDAMENTAL EQUATIONS
AND FORMULAS OF THE THEORY
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where m refers to the quantum numbers of the initial (ex-
cited) target state with state vector ~%' ), P to the quan-
tum numbers (momentum, spin) of the initial state of the
incident electron, and n and q for the final-state quantum
numbers of the target, with state vector ~%„) and scat-
tered electron, respectively.
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is the excited-state —excited-state Bethe-Salpeter ampli-
tude and

Pp(1)=gp(r, t, )=e 'y (o, )e

is a propagating free-electron state wave function, where
(o i) is the Pauli spin function and E =p /2m is the

0

energy of the free electron. In obtaining Eq. (2) and Eq.
(1), the following relationship between the az(t) and g(rt)
operators has been used:

A. General formulation

The development of the many-body theory of
electron-impact excitation out of excited atomic targets
follows closely the one introduced for excitation out of
the ground state [68,69,75]. The fundamental concepts
and formulas of the many-body Green's-function tech-
nique has been summarized by Csanak, Taylor, and Yaris
[69] (during the rest of the paper, we shall refer to this re-
view article as CTY) and a glossary was given by Csanak
and Taylor [84].

Tables I and II list the fundamental concepts and nota-
tions used in our theory. Throughout this report we shall
use hartree atomic units.

The scattering matrix for electron scattering can be
given as [69]

120 000—

160 000—

FICr. 1. The term diagram for He. The initial atomic levels
of interest in this work 2 'S and 2 S are circled.
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TABLE I. Coordinates, field operators, and state vectors.

r, r»r2, . . .
o') o ))o'2) . . ~

r —= (r, o ), rI =—(r»a&)
psp»p2~ ~ ~ ~

P =(P o ) P1=(P1 o 1)
t, t() t2) ~ . .
1—:(r» o.» t

& ),2—:(r2, o2, t2 )

P(r)= P—(r, cr), f1(r):r/i (r—, cr)

Qp, ap

ttt(r) —= 1t (r, o ) = g a~tttt, (r, o )
p=(p, m )

P (r) =P(r, o—)= g a~/~ (r, o )
p=&p, m )

t))~(r, o)=Pp (r, cr)=e'"'X (o)
Htq( )

—'Ht

yt(rr ) et'Htqt(r)e —(Ht

A (t& )B(t2) for t, ) t2

B(t )A(t ) for t &t

Spatial coordinates of an electron
Spin coordinates of an electron
Spatial and spin coordinates of an electron
Momentum coordinates of an electron
Momentum and spin coordinates of an electron
Time coordinates of an electron
Spatial, spin, and time coordinates of an electron
Annihilation and creation operators, respectively,

of an electron at position r and with spin o.

Annihilation and creation operators, respectively,
of an electron with momentum p and with spin o.

Heisenberg representation of g(r) and P (r), respectively

State vector of the ground state
of an atomic system of N electrons

State vectors of the mth, nth, . . . excited states
of an atomic system of N electrons

Scattering state of an (N+1)-electron system
with incident electron of quantum numbers p and target
in the ground state

Scattering state of an (N+1)-electron system
with scattered electron of quantum numbers q
and target in the ground state

Scattering state of an (N + 1)-electron system
with incident electron of quantum numbers p
and target in the Mth excited state

Scattering state of an (N+1)-electron system
with scattered electron of quantum numbers q
and target in the nth excited state

T is the Wick time-ordering operator

TABLE II. Green's function, Bethe-Salpeter, and Feynman-Dyson amplitudes.

f,' '(1)=&)P ~1((1)~(P,'

f ttt ( + )
( 1 ) & (1(

~ q( 1 ) ~

(P ( + )
&

f, ' '(1)=&(P lg(1)l)1t', '&

One-particle Green's function

Ground-state —excited-state Bethe-Salpeter amplitude
Excited-state —ground-state Bethe-Salpeter amplitude
Excited-state —excited-state Bethe-Salpeter amplitude
One-electron, particle-type Feynman-Dyson amplitude

with outgoing-wave boundary conditions
One-electron, particle-type Feynman-Dyson amplitude

with incoming-wave boundary conditions
One-electron, particle-type Feynman-Dyson amplitude

in reference to the mth excited state of the target
with outgoing-wave boundary conditions

One-electron, particle-type Feynman-Dyson amplitude
in reference to the mth excited state of the target
with incoming-wave boundary conditions

One-electron, particle-type Feynman-Dyson amplitude
associated with the ~%~(+'& scattering state.

One-electron, particle-type Feynman-Dyson amplitude
associated with the

~ 4» „'& scattering state.
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a (t)= J P(rt)P*(rt)dr (3b) where

where g(rt) =e' 'f(r)e ' ' is the one-electron field opera-
tor in the Heisenberg representation (see Table I). Thus
the a (t) operators are the expansion coefficients in an ex-
pansion of the g(rt) operator in terms of the P (rt) func-
tions [see Eq. (20d) in CTY].

In order to obtain an exact formula for S„,the limit
required by Eq. (2) has to be calculated. This can be
achieved most easily if an equation is obtained for the
X„(1,1') amplitude. This can be accomplished if one
starts from the time-dependent Bethe-Salpeter equation,
which can be given in the form [Eq. (68) of CTY]

R(12, 1'2+)=
5U(2)

is the linear-response function and

5X(4,4')
5G(5', 5)

(5)

(6)

is the two-point vertex function. Now difterentiating Eq.
(4) according to the U(3), an equation will be obtained
for the quadratic response function R (123, 1'2+3+),
defined by [see Eq. (A7) in Ref. [84]]

R (12, 1'2+ ) = G(1,2+ )G(2, 1')

+ Id 4 d4'd 5 d 5'G(1, 4)G(4', 1')

X:-(45,4'5')R (5'2, 52 ) (4) in the form
I

5R(12, 1'2 ) 5 G(1, 1')
5U(3) 5U(3)5U(2)

(7)

R (123, 1'2+3+ ) =R (13,23 )G(2, 1')+G(1,2)R (23, 1'3+ )

+ Jd4d4'd5d5'[R(13, 43+)G(4', 1')+G(1,4)R(4'3, 1'3 )] (45 4'5')R(5'2 52+)

+Id4d4'd 5 d 5'G(1,4)G(4', 1'):-(45,4'5')R (5'23, 52 3+ )

+ Jd4d4'd5d5'G(1, 4)G(4', 1') ' R(5'2, 52+) .
5U(3)

By applying the Gell-Mann —Low [85] operator (X) on both sides of this equation and using the identity

X„(1,1')=— X(, „)L(, „)f dr2dr3R (123, 1'2+3+ )X„(2,2+ )Xo (3,3+ ),1 1

l d~dm

valid when num, where

d = Jdr2Xo (2,2+)X (2,2+),

one obtains the following exact equation for the X„(1,1')(num) amplitude:

X„(1,1')=— d2 d 2'd 3 d 3'[Xo (1,2')G(2, 1')+G(1,2')Xo (2, 1')]:-(2'3',23)X„(3,3')1

l

+ jd2d2'd3 d3'G(1, 2)G(2'1'):-(2'3'23)X„(3,3')

+—J d4d4'd5d5'd6d6'G(1, 4)G(4', 1'):-' '(456, 4'5'6')X„(6', 6)XO (5, 5')
1

where we have introduced the three-point vertex function

:-"'(456 4'5'6') =
5G(6', 6)

This equation can be used in calculating the limit required in Eq. (2). The following result is obtained then:

S Jd2d2 d3d3 [fq *(2 )f (2)+f *(2 )f (2)] (2 3 23)X (3 3 )

—Id 2 d 2'd 3 d 3'f ' '*(2')f '+ '(2):-(2'3', 23)X„(3,3')

——.J d2d2'd3d3'd4d4'f' '*(2')f'+'(2):- (234, 2'3'4')X„(4, 4')Xo (3,3') .
I

(10)

(12)

(This formula is valid only for num).
The Feynman-Dyson amplitudes appearing in Eq. (12)

are defined in Table II. In obtaining Eq. (12) from Eqs.
(2) and (10), the limiting formulas enlisted in Table III
were used.

In order to calculate the S matrix given by Eq. (12), we
need to know how to calculate the fz

+ and fq
functions. This can be achieved if one uses the definition
of these functions (see Table II) and the equation for
Xo (1,1'), which can be obtained from Eq. (4),
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TABLE III. Limiting formulas for Feynman-Dyson
amplitudes.

Let us introduce the notation

(t)p{rt)=e'P'X (o. )e
S

where

where (using hartree atomic units)

V(1 —2)—:5(t, t,—) V(r, —r, ) =5(t, —t, )
1

1 2

and

G(1, 1')=GH„(1, 1') (18)

then

c, —p/2 where GH„ is the Hartree-Fock (HF) Green's function
and

f'+'(rt) =i lim f dr'G{rt, r't')(t)p{r't')~ —oo

X ( 1, 1')=X ' ( 1 1')

XO (1 Ii) XO, RPA(1

(19a)

(19b)
f' )"{rt)=ilim f dr'G{r't', rt)(t)q(r't')~ oo

fp '+'(rt)= lim f dr'X {rt,r't')(t)p{r't')
t —+ —oo

f ' '*(rt ) = lim f dr'Xo {rt, r't')/*{ r't')
t ~oo

fp '+'(rt)= lim f dr'Xo {rt,r't')Pp{r't')

where Xo ' (X ) refers to the Xo ( X ) amplitude
in the random-phase approximation (RPA). Xo '

satisfies Eq. (13) if the G=GH„and:-:—V approxima-
tions are used in it. (For the definition of the Hartree-
Fock Careen's function see, e.g. , CTY.)

From Eqs. (11) and (16) it immediately follows that in
our first-order scheme

f ' '*(rt)= lim f dr'X (r't', rt)Pq(r't')
t —+ oo :-"'(456,4'5 6 ) —=0 . (20)

where

dr' —= dr'
The first-order formula for the S matrix is obtained if

the

refers to spatial integration and spin summation.

X() (1,1')= f d3 d3'd4d4'G(1, 3')G(3, 1')

X:"(3'4,34)X() (4, 4') .

Then one obtains

fp
' '(1)=—. d3d3'd4d4'G(1, 3')f'+'(3)=1

l

X:"(3'4',34)X() (4, 4') .

(13)

(14)

substitutions are made in Eq. (11) as well as in Eqs. (14)
and (15) in obtaining the f '+ (1) and fq

' '(1) func-
tions. Besides, in Eq. (12) we substitute f'+'=fp(+'

f( )=f( ) where f + and fq q q

Hartree-Fock approximations for the Feynman-Dyson
amplitudes (they are also called static-exchange orbitals)
and in Eq. (14) and (15) we use the G=GHP, == V,f'+'=f'+', and f' '=f' ' " substitutions. [See Eq.
(16).]

In order to get our working formulas we need to
change from time to energy variables, i.e., to effect a
Fourier transformation. This can be facilitated if the fol-
lowing factorizations are introduced (see, e.g. , CTY):

The appropriate equation for f ' '*(1) can also be ob-
tained from Eq. (13) using the definition in Table II, pro-
vsdrng

Xo ( 1, 1')=exp —co

where

(t, + t, ')
X() (r, r' ; ))r) (21a)

fq *(1 ) fd3d3 d4d4 f *(3 )G(3 1 ) T~
—t] —t ] (21b)

X:-(3'4',34)X() (4,4') . (15)
and co =E —Fo is the excitation energy of the mth ex-
cited state,

This completes the general considerations with respect to
the exact S-matrix formula.

B. First-order approximation

fp+)(1)=e ' 'fp(r, ),
f( —)q(1)— '

q if( —)q( )

(21c)

The first-order approximation will be defined by the
following equations [86]:

where c and c are the kinetic energies of the incident
and scattered electrons, respectively, and

:-(3'4', 34) = i5(3 —3')5—(4—4') V(3 —4)

+i5(3' —4)5(3—4') V(3 —3')

fm(+)(1)

fm( —)q(1)—e
q

'(~m+'p)') ym(+)(
)J p I

Pl q (fm( )
( )

(21e)

—= V( 3'4', 34) (16) If these factorizations are used in the first-order S-matrix
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formula as well as in the first-order equations for the

fz '+'(1) and f~
' '*(1) amplitudes, and the notation in-

troduced

W(r', rz, r, rz) =[5(r, r', )—5(rz —rz )

[cu +e„—h(r')]f„'+'(r') —f dr XHF(r', r)fz + (r)

= f dr, drzdrzf~+'(r, ) W(r'rz, r, rz)X (rzrz),

(23a)

where

—5(r', —rz )5(r, rz —)]V(r, —rz)

5(r, rz—) =5(r, —rz)5

V(r, —r, ) = I/~r, —rz~,

then the following formulas are obtained:

(22)
[ez co ——h(r)]f ~ ~~*(r)—f dr'XHF(r', r )f ' '*(r')

= f dr I drzdrzdr zf
' '*(r

I ) W(r &r z, rrz )X (r zrz ),
(23b)

and

S„" = 2~—i f dr, dr', drzdrz[f ' '*(r', )f~+' "(r, )+f~
' (r', )f„'+'(r, )]W(r', r'z, r, rz)X„(rzrz)

+ f««$«z«zfq '"" (rI )fp""'+'(r])W(rIrz, r[rz)X. (rzrz) ' . (24)

This is our first-order formula and valid for num. Equa-
tions (23a) and (23b) describe coupled channels in which
the initial state m is coupled to the ground state and to a
doubly excited state, respectively.

In the above formulas, the various terms can be
represented by Feynman-like diagrams as shown in Fig.
2. The interpretation of the various terms in Eq. (24) in
terms of a coupled channel scheme is shown in Fig. 3.
The quantities

( — )
' *' '''

( )
1 2 S

—m m M ™1
1' 2

with C ' ' ' referring to the Clebsch-Gordan coefficient
1 2 3

and g (o. ) to the Pauli spin function. We can assume

X„(rr')= ( e, ~
qt(r)P(r')

~ @„&,

X„( ')=(4'„lyly( )q( ')l+, &,

X„(rr')= (0'„~g (r)P(r')I'P

(25a)

(25b)

(25c)

P

are transition density matrices, and h(r) = —
—,
' V —Z/~ri,

where Z is the nuclear charge and XHF is the Hartree-
Fock potential.

1S 1S

(a) Direct excitation

1S

(b) Exchange excitation

C. Spin factorixation

In the following we shall write

—~L m~ mg m~ m
L S

and

P

X (r'r)=X (r'r)g (o'o ) (26)

[the subindex of the X (r'r) amplitude could have been
written as m, S ] where the two-electron spin function

is defined by the formula
S

n ——nI. "M"S"m"
L S

where L ML S Ms (L "MzS"Ms) refer to the angular
momentum and spin quantum numbers of state m (n),
and m (n) refer to all other quantum numbers. It can be
shown easily that the X (r'r) amplitude can be written
in the following spin-factorized form:

1s

(c) Channel coupling to ground state (d) Channel coupling todoublyexicited state

FIG. 2. Feynman-type diagram for the illustration of direct
(exchange) excitation terms included into the FOMBT of
electron-impact excitation out of excited states. The He atom is
used here as an example. The solid lines with arrows to the
right refer to e+He scattering (continuum) orbitals; the double
solid lines (with arrows to the right) refer to excited (bound or
continuum) state orbitals of the He atom. Solid lines with ar-
rows to the left refer to the (ground state) 1s orbital of He.
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Doubly excited state

n + L (Final state)

I tt

I

I

I

I

I
I

I

I

I

I
I

)(

2 step excitation
through doubly

x

excited state

m(-)

Direct
'iiIexcitatlon I(

GHF(r, r', e) =GHF(r, r', e)5 (29)

~yZ+msfm(+)(
) ( 1) pc)/2 1/2 S ~m(+)(

-ms ms Ms S

(30)

Using Eqs. (26), (28), and (29) in the integral form of Eq.
(23a), we obtain the spin-factorized form off '+ '(r) as

(
2 step

excitation
through

ground state ~

-m(+)
fp

So (Ground state)

r
I

I
I rr
I /
I

I ~y

(Initial state)

FIG. 3. Schematic representation, in terms of coupled chan-

nels, of the physical processes included in the FOMBT of
electron-impact excitation out of excited states. [See Eqs. (23a)
and (23b) and (24) and comments following. ]

f + (r)=2f + (r)Q f + (—r) (31)

where fF+(' (r) and f&2' (r) are given by the following
equations:

f~ 1+'(r)= f dr, dr2GHF(r rl Ep+co )fp (rl)

where evidently nz, =m, +M& and the spatial part

f~
'+'(r) has the form

X V(r, —r2)X (r2r2), (32a)
the following spin factorizations of the Hartree-Fock
scattering orbital and Hartree-Fock Green's function, re-
spectively:

f 2+'(r)= f dr, dr2GH„(r, r2, E +co )f +' "(r, )

f (+)HF( )
—f (+)HF( ) ( )P P m (28) X V(rl —r2)X (rl, r2) . (32b)

and Thus we obtain for f '+)(r),

[E +co —h(r)]f '+'(r) —f dr, XHF(r, r) )f '+'(r, )

=25 g "'+'(r)fdr, V(r —r, )X (r,r, )
—f dr,f "'+'(rl)V(r —r, )X (rlr) .

Assuming the factorization

(33)

(34)

for the outgoing-wave continuum orbital we obtain from the integral form of Eq. (23b) the spin factorization of
f ' )(r) in the form

fm( —
)(&)—( I ) sc)/2 1/2 S ~m( —

)(r)2)
q —msms Ms q S

(35)

where m, =m, —Ms and fq ' '(r) is given as
q

fm( —)(r) 2$ gm( —)(r) fm2(
—)(r)

with fq 1 (r) and fq 2 )(r) defined by the equations

fq', ' (r)= f dr, dr2fq ' " (r, )GH„(r„r;Eq —corn)V(r, —r2)Xm(r2r2), (37a)

fq 2
' (r)= fdr, dr2fq ' " (r2)GHF(r„r;E~ —co )V(r, —r2)Xm(r, r2), (37b)

and we obtain the following equation for the f ' ' (r) function:

[s —co —h(r)]f ' ' (r) —f dr)XHF(r, r()f q
' '*(r, )

=26s gq
' " (r)f dr2V(r —r2)Xm(r2r2) —fdr, f'q '(r, )V(r —rl)X (rr, ) . (38)
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In order to complete our spin analysis we need to execute
the spin summations in the electron scattering T matrix.
For that reason we need to discuss here also the spin fac-
torization of the Xn and X, amplitudes. From the
definitions of X„and X„ it immediately follows that

where

I4= J dr dr'f I ' " (r')f '+'(r) V(r —r')X„(rr'),

Tv — dr draff
(
—)HF (r)f (+)HF(r)

nq, mp p

(44"')

X (rr') =X*(r'r ), (39) X V(r —r')X„(r'r')
which yields the factorization of X„, which will be writ-
ten here in the form

=5 5 „5,Ms 2I5; (43"")

~n Mn
X„(rr')=( —1) X„(rr')g „„(oo')

S

where

X„(rr')=( —1) X„*(r'r) .

(40)

(41)

where

I = drdr'f' ' (r)f'+' "(r)
5 q P

X V(r —r')X„' '(r'r'),

TVI d d pf (
—)HF*( I )f(+)HF( )nq, mp q p

(44/Ill)

The spin analysis of the X, amplitude is somewhat more
involved because both n and nz can refer to triplet states.
Using tensor algebra along with the signer-Eckart
theorem it can be shown that X„can be spin analyzed in
the form

X„(rr')= g (
—1)" qC" „g (o, o ')X„'"'(rr') .

k

(42)

Subsequently we shall discuss the form of X„' '(rr') in
our approximation. Now the above spin factorizations
can be introduced into the various terms of our T matrix
and the spin summations executed providing the follow-
ing expressions, term by term:

X V(r —r')X„(rr')
1/2+ ms

y( 1)k —
q( kS S"

( 1) p
qMS M

k, q

and where

drdr'f' 1 F (r')f'+'H" (r)6 q P

X V(r —r')X„' '(rr') .

D. Angular momentum analysis

(43 II I I I

)

(44l I I I I
)

i/2+ ms
p C1/2 1/2 S

—m m M gnP
s s S

I2

where

I, = drdr' ' '* r '+' " r Vr —r'Xn r'r'

T = dr dr' ' ' " r '+ ' r V r —r' X„r'r'

(43)

In order to implement our scheme numerically, we
need to reduce partial integro-differential equations to
coupled conventional integro-differential equations. This
is most conveniently accomplished by performing an an-
gular momentum analysis. The continuum Hartree-Fock
orbitals will be expanded in the form

f' —'(r) =&8/p qr gi'e +;s (p) Pp, (r)
P r

l, m

1/2+ ms
1) pC1/2 1/2 S

—m m Mm ~nP 2
s s S 7

II

(43')

where

I2= drdr' ' ' " r '+' r V r —r' X, r'r', 44'

TIII — d d If Pl( —)s( l)f(+)HF( )nq mp r r
q p

(r) YI* (p), (45)

l~P I(r) — &2/qrp sin pr — +61(p)
I ~ 00 2

(46)

where r (p) and r (p) refer to the radial and angular
coordinates of r (p), respectively, Y& (r) is the usual
spherical harmonic and the radial functions P &(r) have
the asymptotic form

X V(r —r')X„(rr')
—

( i)S ( 1/2 1/2 S CI/2 1/2 S"

q I2

where

I3= drdr' ' '* r' '+' " r V r —r' X„rr'

T„' = Jdr dr'f' ' (r')fp '+'(r)

(43")

(44")
GI "(r,r';F. )

GHF(r, r';E)=y, YI (r)YI' (r'),
i, m

(47)

where 51(p) is the phase shift of the lth partial wave for
incident momentum p. Analogous partial wave expan-
sions can be introduced for the Hartree-Fock Green's
function GH„(r, r'; E ), and potential XHF( r, r'), respective-
ly, in the form

X V(r —r')X„(rr')

1) ™sMs( 1/2 I/2 S ( I/2 1/2 S I ~

( 3/ lf)

yHF(r
XHF(r, r')= g, 1'I (r)YI* (r') .

~, m

(48)

(For the rest of this section, r will always refer to the
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magnitude of the r vector. ) From

h(r)GH„(r, r', E)—f dr"XH„(r, r")GH„(r",r', E)

—eGH„(r, r'; e ) =5(r —r') (49)

3/2 E6)(q)

f ' '(r)=&8/q gi'
q (2l+ 1)'

x Gq, i(r) &rm (r)YIm (q) (52)

it follows that

1 d
dr

l (I + 1)
r

—f dv"X( "(r,r")GI "(v",r', e)=6(r r') . —(50)

XF, , (r)YI (r)Y,* (p), (51)
I

In Eq. (49) h(r)= —
—,'V —Z/r where Z is the nuclear

charge.
The angular momentum expansions introduced above

allow us now to introduce analogous expansions for the
f~

'+'(r) and fq
' '(r) functions. These expansions take

a fairly complicated form in the most general case and
here we shall restrict ourselves to situations where
L =0; i.e., the initial excited state is an S state. (In the
following all formulas will be relevant to only this case.
Our primary interest is to consider electron-impact exci-
tation out of the 2 S and 2'S states of He. ) In this spe-
cial case the following expansions can be assumed for
f '+'(r) and f„' '(r),

X (rr')=X (rr') Y (r)YOO(r') .
L

(53)

The factorization of X (rr') follows immediately from
Eqs. (41) and (53). The angular momentum factorization
of X„'"'(rr') is quite complicated in general; however, in
the present case, where it is assumed that I. =0, the fac-
torization of X„'"'(rr') also takes the simple form of Eq.
(53),

X„'"'(rr')=X„'"'(rr')Y „„(r)Yoo(r') . (54)

Using now the above angular factorizations, Eqs. (23a),
and (23b) can be reduced to conventional integro-
differential equations, and the S-matrix element, given by
Eq. (24), can be reduced to one-dimensional repeated in-
tegrals.

Here we shall give only the integro-differential equa-
tions for the F~ &(r) and G~ ~(r) functions that take the
form

We also need the angular momentum factorization of
X (r'r), X (r'r), and X„'"'(rr') amplitudes. It can be
shown easily that in the case of a 'S ground state (which
is assumed in our case) one can factorize X (r'r') in the
form

d 2Z l (1+1)
2+2(Eq+co )+ —

2 Fp I(r) 2. dv'X( —(r, r')Fp ((r')
dr' ' r r

I

=45 M P &(r)(2l+1)'~ f dr' X (r'r') —2, f dr' I,X (rr')P &(r'), (55)ill (2i+ 1 )J/2 I+] Pl

d 2Z l(l+1)
2 +2(E~ —co )+ —

2
G ~(r) —2 dr'XI "(r,r')G I(r')

dr r

r
=45 ~ (2l +1)'~ f dr' X (r'v') —2, f dr' I,X (rr')P I(r')

r ) (2l+ 1)'~ r')+ ' (56)

where we used the notation r& =min(r, r') and
r) =max(r, r').

E. Cross-section formulas

Here we shall collect the cross-section formulas for the
various spin arrangements using our first-order theory for
the T matrix.

S =O, S"=0: singlet-singlet transition

do
dQ

1 q 1 1

4~2@ 22S +1 m Mvrt m Mns S s S

(57)

In a conventional electron-scattering experiment, un-
polarized electrons are scattered from a target whose spa-
tial and spin orientation is random. Thus the cross sec-
tion measured includes an averaging over these unknown
quantum numbers as well as a sum over the spin and
orientation quantum numbers of the final state. If we use
the notation introduced in Sec. II D, then the measured
differential cross section can be given as

do. 1 q 1 (o)
dA 4 p

' 2
I +I — (I +I )++2I —— —I5 ~2 6

(58a)

S = 1,S"=0: triplet-singlet transition

2

2(I
~
+I2 ) —(I3 +I4 ) —I6

(58b)
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5 =O, S"= 1: singlet-triplet transition
2

3 q 1
(I3 +I4 ) +I6(&)

8~3 p

S = 1,S"= 1: triplet-triplet transition

~ I, +&2I, I—',"+ +I—,")
127T' p &2

(58c)

impact excitation of excited atomic systems we shaH re-
formulate the general formalism presented in Secs. I and
II much along the same lines as done earlier by Csanak,
Taylor, and Tripathy for excitations out of the ground
state [81]. This latter work will be referred to in the fu-
ture as CTT.

Our starting point will be the equation connecting the
generalized linear-response function, defined by the for-
mula [Eq. (5)],

+ I +&2I — I' ' — I"'—
4 5 ~2 6 2 6 R(12, 12+)=

5U(2)
(59)

+)I, I,+I',—"('

+ —(I3+I4)+&2I5— I6 '

to the functional derivative of the optical potential
5X/5U, and which can be given in the form

(58d) R (12, 1'2+ ) =G(1,2)G(2, 1')

In the above formulas der/dQ refers to the differential
cross section and the integrals I„(n=1,2, . . . , 5),I6"'
were defined in Sec. II C.

III. REFORMULATION
OF THE GENERAL MANY-BODY THEORY

OF ELECTRON-IMPACT EXCITATION
OF EXCITED ATOMIC SYSTEMS

In order to get a better physical insight into the general
theory of many-body Green's function for electron-

I

+ f d4d4'G(1, 4)G(4', 1') ' . (60)
5U(2)

[This equation can be obtained from Eq. (4) by using the
"chain rule" backwards. ] From Eq. (60) it follows then
that the quadratic response function defined by the for-
mula [Eq. (7)],

R (123, 1'2+3+ ) =
5U(3)5U(2)

satisfies the following equation:

R(123, 1'2 3+ ) =R (13,23+ )G(2, 1')+G(1,2)R (23, 1'3+)

5X 44'+ fd4d4'[R (13,43 )G(4', 1')+G(1,4')R (4'3, 1'3+ )] 5U(2)

+ f d4 d4'G(1, 4)G(4', 1') 5 X(4,4')
(62)

If we use now the identity [Eq. (9)]

~ =1 1X (1 1')= —. X(, „g(, )
1 n m

X f dr2dr3R (123, 1'2+3+ )X„(2,2+ )

~ =1 1
&(( --W(t ---)

l n m

5U 25U 3

(66)
XX (3,3+ ), (63)

where X refers to the Gell-Mann —Low operator [85],
then we obtain from Eq. (62)

X„(1,1')=fd4d4'[X() (1,4)G(4', 1')

(In the above equations m %0 and n %0.)
The definition of Vo„, given by Eq. (65), is identical to

the one given in CTT [Eq. (4a) there]. For the sake of
completeness we give here also the definition of the Vno
potential by the formula

+G(1,4)X() (4', 1')]V()„(4,4')

+ f d4d4'G(1, 4)G(4', 1') V „(4,4'), (64)

1 1 5X(1,1') X„V 0(l 1')=— X(, „) dr2 ' X()(2 2+) .

where we have introduced the Vo„and V „optical cou-
pling potentials (or transition potentials) by the
definitions, respectively,

1
I

Vo„(1,1')= —. X(, )f dr2
' X„(2,2+) (65)

Using now Eq. (63) in the S-matrix formula [Eq. (2)],

Snq mp lim dr&dr ~ q
1 p 1 Xn

t) ~(x)

(67)

and we obtain
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S„...= —.J did 1 [f -'*(1 )f,'+'(1)

+f' '"(1')f '+'(1)]VD„(1,1')

—J did 1'f' "(1)f'+'(1')V „(1,1') . (69)

In Sec. II we defined the first-order theory by the ap-
proximations

:-(12,1'2') = —i5(1—1')5(2—2') V(1 —2)

+i5(1—2')5(1' —2) V(1 —1')

Here the f ' ' and f '+ ' functions need to satisfy the
equations, respectively,

=—V(12, 1'2'),
:-' '(123, 1'2'3') =0,

(75a)

(75b)

fp '+'(1)= fd3d3'6(1, 3')f'+'(3)V 0(3,3'),

fq *(1 ) fd3d3 fq (3 )G(3 1 )V 0(3 3 )

(70)

(71)

In comparing these latter equations with Eqs. (14) and
(15) we can immediately establish the relationship of the
present formalism with the one presented in Sec. II.
These relations can be given by the formulas + V(1 —1')X„(1,1'+), (76)

and by using 6—:GHF in Eqs. (70) and (71). Thus we can
obtain the fundamental equations of the first-order theory
in the new formulation. The above approximations give
for the optical coupling potentials

V" (1,1')= —5(1—1')f d2 V(1 —2)X„(2,2+)

and

VD„(1,1')= —.fd2d2':-(12, 1'2')X„(2',2),1

l

V „(1,1')=fd2d2':-(12, 1'2')X„(2',2)

+ —f d 2 d 2'd 3 d 3':"' '( 123, 1'2'3' )
I

XX„(3',3)XD (2', 2),

V 0(1, 1')=— d 2 d 2':-(12, 1'2')XD (2', 2) .1

l

(72)

(73)

(74)

F"„(1,1')= i5—(1—1')f d2 V(1 —2)X„(2,2+)

+i V(1 —1')X„(1,1'+ ), (77)

V"o (1 1')= —5(1 —1')f d2 V(1 —2)X0 (2, 2+ )

+ V(1 —I')X0 (1,1'+ ) . (78)

If we use these potentials in Eqs. (69)—(71) along with
HF

the G=GH„, f'+'=f'+', and f' '=f' ' " approxi-
mations, we recover FOMBT as defined in Sec. II. Thus
the S matrix in FOMBT is obtained by the form [using
the above approximations in Eq. (69)],

S" =i f d 1 d2 f ' ' (1)f'+'(1)V(1 —2)X„(2,2+)+if d 1 d2f' "(1)f '+'(1) V(1 —2)X„(2,2+)

i J d 1 d2 f ' —'*(1)f~+'(2) V(1 —2)X„(1,2+) i f d 1 d2—f ' '*(1)f '+'(2) V(1 —2)X„(1,2+)

+i f d 1 d2 f' '*(1lf„'+'f~+'(1)V(1—2)X„(2,2+) i f d 1 d2—
fq '*(1)f'+'(2)V(1—2)X„(1,2+) . (79)

This form is identical to that given by Eq. (24).

IV. FUNDAMENTAL EQUATIONS
OF SECOND-ORDER MANY-BODY THEORY

In this section we shall elaborate on the second-order formulas, analyze the physical meaning of some of the second-
order terms, and establish the connection of many-body theory to the distorted wave approximation.

Here we shall define SOMBT by the following approximation for X [see CTT Eq. (5)]:

ysoMBT( 1 5(1—1')—U(1)5(1—1')—i5(1 —1')f d2 V(1 —2)G(2, 2+)+i V(1 —1')6(1,1'+)
r, f

+fd2d3 V(1 —2)RRpA(32, 3+2 )V(3 —1')G(1, 1')

—f d2d3 V(1 —2)RRp~(32, 1'+2 )V(3 —1')G(1,3) (80)

where X and 6 are connected by the Dyson equation [see Eq. (1) in CTT] and RRp~ is defined as [see Eq. (8a) in CTT]

56HF(1, 1')
R RP~( 12, 1'2+ ) =

5U 2

Using X in Eq. (66) we obtain

(81)
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V „(1,1')= —i5(1 —1')f d2 V(1 —2)X„(2,2+)+iV(1 —1')X„(1,1'+)

i —f d2d3 V(1 —2)R„(32,3+2+)V(3 —1')G(1, 1')

+i f d2d3 V(1 —2)R„(32,1' 2 )V(3 —1')G(1,3)

i f—d2d3 V(1 —2)R„(32,3+2 )V(3 —I')Xo (1,1')

+i f d2d3 V(1 —2)R„(32,1'+2+)V(3—I')Xo (3, 1')

+ d2 d3 V I —2 R 32, 3+2+ V 3 —1' X„ 1, 1'

—fd2d3 V(1 —2)R(32, 1'+2+)V(3—1')X„(1,3),
where we have introduced the R„and R„quantities by the definitions

5R 12 1'2+

5U 3

n 5U 35U 4

(82)

(83)

(84)

From the Schwinger relations (see the Appendix) we obtain the following expressions for the R„and R„quantities:

R„(12,1'2 )=i(n~T[Q (1')f(1)f (2+)f(2)]~0)+X„(1,1')G(2, 2+)+X„(2,2 )G(1, 1') (85)

R„(12,1'2+)=(n ~T[Q(l)f (I')1i (2+)Q(2)]~m )+iX„(1,1')G(2, 2+)+iX„(2,2+)G(1, 1')

(87a)

and

+X„(2,2+ )Xo ( 1, 1')+5„[R( 12, 1'2+ )
—G( 1, 1')G(2, 2+ ) ] . (86)

In order to establish a connection between the present many-body theory and 0%A we shall consider now only those
terms in V „ that contain the R„quantity, i.e., the third and fourth terms on the right-hand side of Eq. (82).

Let us separate out the following two terms from R„(assuming that num):

R„-'(12,12+)=&nlT[q(1)q'(I')]1m &&mI@'(2')g(2)lm &8(t —t )8(t', —t, )

+&n q'(2)q(2)lm &&mIT[q(1)y'(1')]lm &8(t, —t, )8(t, —t', )

R„'f(12,1'2+)=(n ~T[g(1)g (I')]~n )(n ~g"(2+)g(2)~m &8(t, —t, )8(t', —t, )

+(n ~f (2)g' '~n )(n T[g(l )g (1')] m )8(tz —
t& )8(t2 —t

& ),
where 8(t) is the usual step function. If we use now 1'+ on the left-hand side of Eqs. (87a) and (87b), we obtain

R„'(12,1'+2+)=X„(1,1.'+)p (2)8(t, —t )+X„(2,2+)p (1,1'+)8(t —t, )

(87b)

(88a)

R„'f(12,1'+2+)=p„(1,1'+)X„(2,2+)8(t, —t )+p„(2)X„(1,1'+)8(t t, ), —

where we have introduced the excited-state density and density matrices by the definitions

p (1)=(m~g (1)g(l)~m)

(88b)

(89)

p (1,1'+)=&m ~g (1' )g(l)~m & . (90)

We note here that on the right-hand side of Eq. (82), R„(12,1'2+) appears with 1'—= 1'+ (i.e., t
&
=t&+E) and we can

write R„(12,1'2+ ) in the form using Eq. (86) (and taking again the num case).

R„(12,1'+2+)= g & n IT[&(1)g'(I'+)]Ik & & k lg'(2)g(2)lm &8(t) —t~)
kXm, n

+ & & n lg'(2)@(2) Ik & & k IT[&(1)g'(I'+)]1m &8(t, —t, )
kWm, n

+R„'(12,1'+2+ )+R„ f(12, 1'+2+ )+iX„(1,1'+ )G(2, 2+ )

+iX„(2,2+)G(1, 1' )+X„(2,2+)Xo (1,1'+) (num ) . (91)
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—i f d 2 d 3 V(1 —2)X„(2,2+ )po(3, 1'+ ) V(3 —1')G(1,3)

i—f d2d3 V(1 —2)p„(3)X„(2,2+)V(3 —1')6(t —t )G(1, 1')

—i f d 2 d 3 V(1 —2)p„(2)X„(3,3+ ) V(3 —I')6(t —t, )G(1, 1')

+i f d2d3 V(1 —2)p„(3,1'+)X„(2,2+)V(3 —I')6(t, —t 2)G(1,3)

+i f d2d3 V(1 —2)p„(2)X„(3,1'+)V(3 —1')8(t —t )G(1,3) (93)

where we have introduced the ground-state density po(1) and ground-state density matrix po(1, 1 ) via the definitions,
respectively,

po(1) = ( O'Olf (1)g(1)I'I'0),

p,(1,1')——(q, ly'(I + )y(1)lq. & .

(94)

(95)

On the right-hand side of Eq. (93) integration for the t2 and t3 time variables is implied. However, since the V(1 —2)
and V(3 —1') potentials contain 5(t, —tz) and 5(t3 —t', ) factors, respectively, those integrals can be executed immediate-
ly and the result is the tz=t, and t3=t', contraction. As a result, every term on the right-hand side contains the
6(t, —t', ) or the 8(t, t', ) fact—or. Now, the G(1, 1')6(t, —t', ) term describes forward propagation in time from t', to t,
and G(1, 1')8(t& —t, ) describes "backwards propagation in time. " In our case these latter terms are negligible and
therefore V' '„' can be written to a good approximation,

V' '„'f(1,1')= i f d—2d3 V(1 —2)X„(2,2+)[p (3)—p (3)]6(t —r )V(3 —1')G(1,1')

+t' fd2d3 V(1 —2)X„(2,2+)[p (3, 1'+)—p (3, 1'+)]6(t t )V(3 —1')G—(1,3)

i f d—2d3 V(1 —2)[p„(2)—po(2)]X„(3,3+)6(t2 —t3) V(3 —1')G(1, 1')

+i fd2d3 V(1 —2)[p„(2)—p (2)]X„(3,1'+)6(t —t )V(3 —1')G(1,3) .

If we use this expression in the S-matrix formula [Eq. (69)] we obtain the following expression:

(96)

d 1 d 1'f ~ i*(1)f~+ i(1') V' )'»( I 1')
nq, mp q p m, n

=i f did 1'd2d3 f' '*(1)V(1—2)X„(2,2+)[p (3)—po(3)]6(t, tI )V(3 ——1')G(1, 1')f'+'(1')

i f d 1 —d 1'd2d3 f' '*(1)V(1 —2)X„(2,2+)[p (3, 1'+)—p (3, 1'+)] 6(t, —t', ) V(3 —1')G(1,3)f '+'(1')

+i fdl d 1'd2d3 f' '*(1)V(1—2)[p„(2)—po(2)]X„(3,3+)6(t, t', )V(3—1')G—(1,1')f'+'(1')

i f d 1 d 1'd2d—3 f ' '*(1)V(l —2)[p„(2)—po(2)]X„(3,1'+)6(t, t', ) V(3 —1')G(—1,3)f+(1') . (97)

The first term on the right-hand side is represented by the Feynman-like diagram shown in Fig. 5(a), whereas the third
and fourth terms are represented by diagrams shown in Figs. 5(c) and 5(d), respectively. It will be convenient to intro-
duce the static-exchange (SE) potential of state m and the static (S) potential of state n by the expressions, respectively

X (1,1')=5(1—1')f d2 V(1 —2)p (2)—V(1 —1')p (1,1'+),

X„(1,1')=5(l —1')f d2 V(1 —2)p„(2) .

(98)

(99)

Let us add now the first-order direct excitation term [the fifth term on the right-hand side of Eq. (97)] to the first and
second terms on the right-hand side of Eq. (97) to give

i fdl d2f' '*(l)f'+'(1)V(1—2)X„(2,2+)+i fdl dl'd2d3 f' '(1)V(l —2)

XX„(2,2+)[Xs (3, 1'+)—X „(3,1'+)] 6(t, t )G(1,3)f'—+'(1'), (100)
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where we used Eq. (98). Equation (100) contains the fol-
lowing expression:

f'+'(1)+ fdl'd3G(1, 3)[X (3, 1'+)—XHF(3, 1'+)]

(101)

This expression appears to be the first two terms of a per-
turbation expansion of an orbital P' "+'(1) defined by
the integral equation

y(m)(+)(1) f(+)(1)

+ f d 1'd3 G(1,3)e(t, t )—

1s

s

1s

X [X (3, 1'+ ) —XHF(3, 1'+ ) ]

X y(m)(+ )( I )i (102)

If additional terms from Eq. (102) are obtained in the per-
turbation expansion of P' "+'(1) they contribute S-
matrix elements that are represented diagramatically in
Figs. 6(a) and 6(b). When all such diagrams are summed
up to infinite order the resulting sum of S-matrix ele-
rnents can be represented by just one (first-order diagram)
shown in Fig. 6(c). Evidently P' "+'(1) represents a
distorted-wave orbital calculated in the static-exchange
field of state n and thus the selective summation of some
diagrams bring in exactly the efT'ect that is considered in
the distorted wave approximation. Quite analogously the
third and fourth terms on the right-hand side of Eq. (97)
contain the e6'ect of the static field of the final state n
upon the first-order direct- and exchange-excitation
terms. When such terms are taken into account up to
infinite order the eft'ect of the final state enters the formal-
ism, very similarly as it is done in the DWA.

1s 1s

APPENDIX: SCHWINGER-RELATIONS
AND OFF-DIAGONAL RESPONSE FUNCTIONS

1s

FIG. 6. Higher-order initial-state interaction diagrams and
their summation.
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Let us define the n-electron Green's function by the
formula

G„(12 . . n, 1'2' . . n')

=—(0 T[g(1)g(2) g(n)g (n') P (1')]~0);1

(A 1)

then the following equations, called Schwinger relations,
hold for the functional derivatives of the one-electron
G-reen's function:

5G, (1,1')
R (12, 1'2+ )—: = —G~(12, 1'2+ )+G((1, 1')G((2,2+ ), (A2)

5 G, (1,1')
R (123, 1'2+3+ ) —=

5U(3)5U(2)

=G3(123, 1'2+3+ )+R (12, 1'2+ )G, (3,3+ )+R (13,1'3+ )G, (2,2+ )

+R(23,2+3+)G, (l, 1')—G, (1, 1')G, (2, 2+)G, (3,3+), (A3)
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5 6)(1,1')
R 1234, 1'2+3+4+

5U(4)5U(3)5U(2)
= —G4(1234, 1'2+3+4+ )+G3(123, 1'2+3+ )G) (4, 4+ )+R (124, 1'2+4+ )G) (3,3+ )

+R (12, 1'2+ )R ( 34, 3+4+ ) +R ( 134, 1'3+4+ )6, (2,2+ ) +R (13,1'3+ )R (24, 2+4+ )

+R (234, 2+ 3+4+ )6 ) ( 1, 1' ) +R (23, 2+ 3+ )R ( 14, 1'4+ )
—R ( 14, 1'4+ )6 i (2,2+ )6 i ( 3,3+ )

—R (24, 2+3+ )G, (1,1')G, (3,3+ )
—R (34,3+4+ )G, (1,1')G, (2, 2+ ) . (A4)

Throughout this work the G —=G, notation will be used.
If X refers to the Gell-Mann —Low operator, then we can define the off-diagonal response functions R„and R„by

the equations

and

d„"3 '" 5U(3)5U(2)

R„(12,1'2 ) = X(, )X(, +„) dr3dr4 ' X„(3,3 )X() (4, 4 ) .
I 1

(A5)

(A6)

Using now Eqs. (A2) —(A4) in Eqs. (A5) and (A6) we obtain

R„(12,1'2+ ) =i ( n
~ T[@ ( I')$(1)tt) (2+ )ttj(2) ] ~0) +X„(1,I')G(2, 2+ )+X„(2,2+ )6(1,I')

and

R„(12,1'2+)= (n
~
T[f(1)tttt(1')g (2+)g(2)] ~m ) +R(1,2, 1'2+)5„+[iX„(1,1')—5„6,(1,1')]G(2,2+)

+X„(1,1')X() (2,2+)+'X„(2,2+)G(1, 1')+X„(2,2+)X() (1,1') .

(A7)

(A8)
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