604 research outputs found

    A low-dose comprehensive cardiac CT protocol assessing anatomy, function, perfusion, and viability

    Get PDF
    AbstractRadiation exposure in cardiac imaging is a major healthcare concern and low-dose cardiac imaging has important implications for patients. We describe the application of a low-dose comprehensive cardiac computed tomography protocol that assesses anatomy, function, perfusion and viability with correlations to invasive coronary angiography and magnetic resonance imaging

    Rating a Stationary Energy Storage System within a Fast Electric Vehicle Charging Station Considering User Waiting Times

    Get PDF
    The use of stationary energy storage at fast electric vehicle charging stations can buffer the energy between the electricity grid and electric vehicles, thereby reducing the maximum required grid connection power and potentially mitigating the need for grid infrastructure upgrade. In this paper, a method is presented that sizes the stationary energy storage based on an acceptable average waiting time of drivers arriving at a fast charging station. The novelty of the paper is the focus on the relationship between size of stationary energy store and user waiting time. This relationship is often ignored, however is critical to obtaining the optimum capacity of stationary energy store. An example charging station location is chosen where there are currently eight chargers capable of 120kW charging and a 500kW grid connection. It is demonstrated that the method can be used at this location to design a charging station with stationary energy storage to support future 400kW charging without upgrading the current grid connection infrastructure. With future charging, using a stationary energy storage with a capacity of 1,000kWh reduces the maximum grid power from 1,800kW to 500kW

    Evaporite sinkholes of the Friuli Venezia Giulia region (NE Italy)

    Get PDF
    Sinkholes are common in the Friuli Venezia Giulia (FVG) Region (NE Italy), where the presence of karstifiable rocks favours their occurrence accelerated by intense rainfalls. Their existence has been reported since the end of the 1800s along the Tagliamento Valley, in correspondence with the mantled evaporites (gypsum). Furthermore, tens of evaporite sinkholes have been documented on the reliefs adjacent to the village of Sauris and along the narrow W\u2013Eoriented valleys, where regional faults have played a major role in their spatial distribution. This paper reports for the first time an inventory of the sinkholes affecting the evaporites of the FVG Region. These phenomena were mapped and categorised using a genetic classification. The main output is an A0-format map, which incorporates a 1:50,000 scale Sinkhole Inventory Map (SIM). The SIM encompasses 552 sinkholes. The cover suffosion sinkholes are the most abundant, followed by bedrock collapses. There is a clear prevalence of the circular shape (65%) over other shapes. Diameters are 1\u2013140 m, with depths ranging 0.1\u201340 m with a mean value of 4.5 m. The SIM can motivate regional planning authorities to perform further investigations aimed to understand the geomorphological evolutions of these phenomena

    Dynamic liquefaction of shear zones in intact loess during simulated earthquake loading

    Get PDF
    The 2010-2011 Canterbury earthquake sequence in New Zealand exposed loess-mantled slopes in the area to very high levels of seismic excitation (locally measured as >2 g). Few loess slopes showed permanent local downslope deformation, and most of these showed only limited accumulated displacement. A series of innovative dynamic back pressured shear-box tests were undertaken on intact and remoulded loess samples collected from one of the recently active slopes replicating field conditions under different simplified horizontal seismic excitations. During each test, the strength reduction and excess pore water pressures generated were measured as the sample failed. Test results suggest that although dynamic liquefaction could have occurred, a key factor was likely to have been that the loess was largely unsaturated at the times of the large earthquake events. The failure of intact loess samples in the tests was complex and variable due to the highly variable geotechnical characteristics of the material. Some loess samples failed rapidly as a result of dynamic liquefaction as seismic excitation generated an increase in pore-water pressure, triggering rapid loss of strength and thus of shear resistance. Following initial failure, pore pressure dissipated with continued seismic excitation and the sample consolidated, resulting in partial shear-strength recovery. Once excess pore-water pressures had dissipated, deformation continued in a critical effective stress state with no further change in volume. Remoulded and weaker samples, however, did not liquefy, and instead immediately reduced in volume with an accompanying slower and more sustained increase in pore pressure as the sample consolidated. Thereafter excess pressures dissipated and deformation continued at a critical state. The complex behaviour explained why, despite exceptionally strong ground shaking, there was only limited displacement and lack of run-out: dynamic liquefaction was unlikely to occur in the freely draining slopes. Dynamic liquefaction however remained a plausible mechanism to explain loess failure in some of the low-angle toe slopes, where a permanent water table was present in the loess

    An Overview of Research and Evaluation Designs for Dissemination and Implementation

    Get PDF
    The wide variety of dissemination and implementation designs now being used to evaluate and improve health systems and outcomes warrants review of the scope, features, and limitations of these designs

    Vascular effects of apelin in vivo in man

    Get PDF
    ObjectivesThis study was designed to establish the direct vascular effects of apelin in vivo in man.BackgroundApelin is the endogenous ligand for the previously orphaned G-protein–coupled receptor, APJ. This novel pathway is widely expressed in the cardiovascular system and is emerging as an important mediator of cardiovascular homeostasis. In pre-clinical models, apelin causes venous and arterial vasodilation.MethodsVascular effects of apelin were assessed in 24 healthy volunteers. Dorsal hand vein diameter was measured by the Aellig technique during local intravenous infusions (0.1 to 3 nmol/min) of apelin-36, (Pyr1)apelin-13, and sodium nitroprusside (0.6 nmol/min). Forearm blood flow was measured by venous occlusion plethysmography during intrabrachial infusions of apelin-36 and (Pyr1)apelin-13 (0.1 to 30 nmol/min) and subsequently in the presence or absence of a “nitric oxide clamp” (nitric oxide synthase inhibitor, L-NG-monomethylarginine [8 ÎŒmol/min], coinfused with nitric oxide donor, sodium nitroprusside [90 to 900 ng/min]), or a single oral dose of aspirin (600 mg) or matched placebo.ResultsAlthough sodium nitroprusside caused venodilation (p < 0.0001), apelin-36 and (Pyr1)apelin-13 had no effect on dorsal hand vein diameter (p = 0.2). Both apelin isoforms caused reproducible vasodilation in forearm resistance vessels (p < 0.0001). (Pyr1)apelin-13–mediated vasodilation was attenuated by the nitric oxide clamp (p = 0.004) but unaffected by aspirin (p = 0.7).ConclusionsAlthough having no apparent effect on venous tone, apelin causes nitric oxide–dependent arterial vasodilation in vivo in man. The apelin-APJ system merits further clinical investigation to determine its role in cardiovascular homeostasis

    Optical coherence tomography versus intravascular ultrasound to evaluate stent implantation in patients with calcific coronary artery disease

    Get PDF
    AIMS: Stent underexpansion and malapposition are associated with adverse outcomes following percutaneous coronary intervention, but detection and treatment can be challenging in the presence of extensive coronary artery calcification. Frequency domain optical coherence tomography (FD-OCT) is a novel intravascular imaging technique with greater spatial resolution than intravascular ultrasound (IVUS) but its role in the presence of extensive coronary calcification remains unclear. We sought to determine the utility of FD-OCT compared to IVUS imaging to guide percutaneous coronary intervention in patients with severe calcific coronary artery disease. METHODS: 18 matched IVUS and FD-OCT examinations were evaluated following coronary stent implantation in 12 patients (10 male; mean age 70±7 years) undergoing rotational atherectomy for symptomatic calcific coronary artery disease. RESULTS: In-stent luminal areas were smaller (minimum in-stent area 6.77±2.18 vs 7.19±2.62 mm(2), p<0.05), while reference lumen dimensions were similar with FD-OCT compared with IVUS. Stent malapposition was detected in all patients by FD-OCT and in 10 patients by IVUS. The extent of stent malapposition detected was greater (20% vs 6%, p<0.001) with FD-OCT compared to IVUS. Postdilation increased the in-stent luminal area (minimum in-stent area: 8.15±1.90 vs 7.30±1.62 mm(2), p<0.05) and reduced the extent of stent malapposition (19% vs 34%, p<0.005) when assessed by FD-OCT, but not IVUS. CONCLUSIONS: Acute stent malapposition occurs frequently in patients with calcific coronary disease undergoing rotational atherectomy and stent implantation. In the presence of extensive coronary artery calcification, FD-OCT affords enhanced stent visualisation and detection of malapposition, facilitating improved postdilation stent apposition and minimal luminal areas. TRIAL REGISTRATION NUMBER: NCT02065102
    • 

    corecore