14 research outputs found

    Dirac quantum spin liquid emerging in a kagome-lattice antiferromagnet

    Full text link
    Emerging quasi-particles with Dirac dispersion in condensed matter physics are analogous to their cousins in high-energy physics in that both of them can be described by the Dirac equation for relativistic electrons. Recently, these Dirac fermions have been widely found in electronic systems, such as graphene and topological insulators. At the conceptual level, since the charge is not a prerequisite for Dirac fermions, the emergence of Dirac fermions without charge degree of freedom has been theoretically predicted to be realized in Dirac quantum spin liquids. In such case, the Dirac quasiparticles are charge-neutral and carry a spin of 1/2, known as spinons. Despite of theoretical aspirations, spectra evidence of Dirac spinons remains elusive. Here we show that the spin excitations of a kagome antiferromagnet, YCu3_3(OD)6_6Br2_2[Brx_{x}(OD)1x_{1-x}], are conical with a spin continuum inside, which are consistent with the convolution of two Dirac spinons. The spinon velocity obtained from the spin excitations also quantitatively reproduces the low-temperature specific heat of the sample. Interestingly, the locations of the conical spin excitations differ from those calculated by the nearest neighbor Heisenberg model, suggesting an unexpected origin of the Dirac spinons. Our results thus provide strong spectra evidence for the Dirac quantum-spin-liquid state emerging in this kagome-lattice antiferromagnet.Comment: 7 pages, 4 figure

    Efferent Projections of Prokineticin 2 Expressing Neurons in the Mouse Suprachiasmatic Nucleus

    Get PDF
    The suprachiasmatic nucleus (SCN) in the hypothalamus is the predominant circadian clock in mammals. To function as a pacemaker, the intrinsic timing signal from the SCN must be transmitted to different brain regions. Prokineticin 2 (PK2) is one of the candidate output molecules from the SCN. In this study, we investigated the efferent projections of PK2-expressing neurons in the SCN through a transgenic reporter approach. Using a bacterial artificial chromosome (BAC) transgenic mouse line, in which the enhanced green fluorescence protein (EGFP) reporter gene expression was driven by the PK2 promoter, we were able to obtain an efferent projections map from the EGFP-expressing neurons in the SCN. Our data revealed that EGFP-expressing neurons in the SCN, hence representing some of the PK2-expressing neurons, projected to many known SCN target areas, including the ventral lateral septum, medial preoptic area, subparaventricular zone, paraventricular nucleus, dorsomedial hypothalamic nucleus, lateral hypothalamic area and paraventricular thalamic nucleus. The efferent projections of PK2-expressing neurons supported the role of PK2 as an output molecule of the SCN

    Retromer Is Essential for Autophagy-Dependent Plant Infection by the Rice Blast Fungus

    Get PDF
    We thank Dr. Yizhen Deng at the Temasek Life sciences Laboratory (TLL) for providing the RFP-MoAtg8 plasmid. We would like to thank Drs. Zhenbiao Yang (University of California, Riverside) and Xianying Dou (Fujian Agriculture and Forestry University) for helpful discussions.Author Summary The rice blast fungus Magnaporthe oryzae utilizes key infection structures, called appressoria, elaborated at the tips of the conidial germ tubes to gain entry into the host tissue. Development of the appressorium is accompanied with autophagy in the conidium leading to programmed cell death. This work highlights the significance of the Vps35/retromer membrane-trafficking machinery in the regulation of autophagy during appressorium-mediated host penetration, and thus sheds light on a novel molecular mechanism underlying autophagy-based membrane trafficking events during pathogen-host interaction in rice blast disease. Our findings provide the first genetic evidence that the retromer controls the initiation of autophagy in filamentous fungi.Yeshttp://www.plosgenetics.org/static/editorial#pee
    corecore