502 research outputs found

    Self-concealment: Integrative review and working model

    Get PDF
    An extensive empirical literature has focused on the self-concealment (SC) construct. In this article, we review 137 studies that used the Self-Concealment Scale (SCS) with varied populations (e.g., adolescent; intercultural; international; lesbian, gay, and bisexual; and intimate partner). We propose a working model for the psychology of SC and the mechanisms of action for its effects on well-being. A dual-motive conflict between urges to conceal and reveal is seen to play a central role in these health effects. Meta-analytic techniques identify significant associations for SC with 18 constructs falling into six general categories: antecedents, disclosure and concealment, emotion regulation, social well-being, psychological and physical health, and psychotherapy. We interpret these findings with reference to current research and theory on secret keeping and health as well as emotion- and self-regulatory processes. This first integrative review supports the construct validity of the SCS and demonstrates the value of the SC construct for the study of psychological phenomena in which secret keeping is a recognized issue

    Quantification of blue carbon in salt marshes of the Pacific coast of Canada

    Get PDF
    Tidal salt marshes are known to accumulate "blue carbon " at high rates relative to their surface area, which render these systems among the Earth's most efficient carbon (C) sinks. However, the potential for tidal salt marshes to mitigate global warming remains poorly constrained because of the lack of representative sampling of tidal marshes from around the globe, inadequate areal extent estimations, and inappropriate dating methods for accurately estimating C accumulation rates. Here we provide the first estimates of organic C storage and accumulation rates in salt marshes along the Pacific coast of Canada, within the United Nations Educational, Scientific and Cultural Organization (UNESCO) Clayoquot Sound Biosphere Reserve and Pacific Rim National Park Reserve, a region currently underrepresented in global compilations. Within the context of other sites from the Pacific coast of North America, these young Clayoquot Sound marshes have relatively low C stocks but are accumulating C at rates that are higher than the global average with pronounced differences between high and low marsh habitats. The average C stock calculated during the past 30 years is 54 +/- 5 Mg C ha(-1) (mean +/- standard error), which accounts for 81 % of the C accumulated to the base of the marsh peat layer (67 +/- 9 Mg C ha(-1)). The total C stock is just under one-third of previous global estimates of salt marsh C stocks, likely due to the shallow depth and young age of the marsh. In contrast, the average C accumulation rate (CAR) (184 +/- 50 g C m(-2) yr(-1) to the base of the peat layer) is higher than both CARs from salt marshes along the Pacific coast (112 +/- 12 g C m(-2) yr(-1)) and global estimates (91 +/- 7 g C m(-2) yr(-1)). This difference was even more pronounced when we considered individual marsh zones: CARs were significantly greater in high marsh (303 +/- 45 g C m(-2) yr(-1)) compared to the low marsh sediments (63 +/- 6 g C m(-2) yr(-1)), an observation unique to Clayoquot Sound among NE Pacific coast marsh studies. We attribute low CARs in the low marsh zones to shallow-rooting vegetation, reduced terrestrial sediment inputs, negative relative sea level rise in the region, and enhanced erosional processes. Per hectare, CARs in Clayoquot Sound marsh soils are approximately 2-7 times greater than C uptake rates based on net ecosystem productivity in Canadian boreal forests, which highlights their potential importance as C reservoirs and the need to consider their C accumulation capacity as a climate mitigation co-benefit when conserving for other salt marsh ecosystem services

    Quantification of Blue Carbon in Salt Marshes of the Pacific Coast of Canada

    Full text link
    Tidal salt marshes are known to accumulate “blue carbon” at high rates relative to their surface area, which render these systems among the Earth’s most efficient carbon (C) sinks. However, the potential for tidal salt marshes to mitigate global warming remains poorly constrained because of the lack of representative sampling of tidal marshes from around the globe, inadequate areal extent estimations, and inappropriate dating methods for accurately estimating C accumulation rates. Here we provide the first estimates of organic C storage and accumulation rates in salt marshes along the Pacific coast of Canada, within the United Nations Educational, Scientific and Cultural Organization (UNESCO) Clayoquot Sound Biosphere Reserve and Pacific Rim National Park Reserve, a region currently underrepresented in global compilations. Within the context of other sites from the Pacific coast of North America, these young Clayoquot Sound marshes have relatively low C stocks but are accumulating C at rates that are higher than the global average with pronounced differences between high and low marsh habitats. The average C stock calculated during the past 30 years is 54 5MgC ha-1 (mean standard error), which accounts for 81% of the C accumulated to the base of the marsh peat layer (67 9MgC ha-1/. The total C stock is just under one-third of previous global estimates of salt marsh C stocks, likely due to the shallow depth and young age of the marsh. In contrast, the average C accumulation rate (CAR) (184 50 gCm-2 yr-1 to the base of the peat layer) is higher than both CARs from salt marshes along the Pacific coast (112 12 gCm-2 yr-1/ and global estimates (91 7 gCm-2 yr-1/. This difference was even more pronounced when we considered individual marsh zones: CARs were significantly greater in high marsh (303 45 gCm-2 yr-1/ compared to the low marsh sediments (63 6 gCm-2 yr-1/, an observation unique to Clayoquot Sound among NE Pacific coast marsh studies. We attribute low CARs in the low marsh zones to shallow rooting vegetation, reduced terrestrial sediment inputs, negative relative sea level rise in the region, and enhanced erosional processes. Per hectare, CARs in Clayoquot Sound marsh soils are approximately 2–7 times greater than C uptake rates based on net ecosystem productivity in Canadian boreal forests, which highlights their potential importance as C reservoirs and the need to consider their C accumulation capacity as a climate mitigation co-benefit when conserving for other salt marsh ecosystem services

    Na incorporation into Cu(In,Ga)Se2 thin-film solar cell absorbers deposited on polyimide: Impact on the chemical and electronic surface structure

    Full text link
    The following article appeared in Journal of Applied Physics 111.3 (2012): 034903 and may be found at http://scitation.aip.org/content/aip/journal/jap/111/3/10.1063/1.3679604Na has deliberately been incorporated into Cu(In,Ga)Se2 (CIGSe) chalcopyrite thin-film solar cell absorbers deposited on Mo-coated polyimide flexible substrates by adding differently thick layers of NaF in-between CIGSe absorber and Mo back contact. The impact of Na on the chemical and electronic surface structure of CIGSe absorbers with various Cu-contents deposited at comparatively low temperature (420 C) has been studied using x-ray photoelectron and x-ray excited Auger electron spectroscopy. We observe a higher Na surface content for the Cu-richer CIGSe samples and can distinguish between two different chemical Na environments, best described as selenide-like and oxidized Na species, respectively. Furthermore, we find a Cu-poor surface composition of the CIGSe samples independent of Na content and - for very high Na contents - indications for the formation of a (Cu,Na)-(In,Ga)-Se like compound. With increasing Na surface content, also a shift of the photoemission lines to lower binding energies could be identified, which we interpret as a reduction of the downward band bending toward the CIGSe surface explained by the Na-induced elimination of In Cu defects.X.S., R.F., D.G., R.G.W., and M.B. are grateful to the Helmholtz-Association for financial support (VH-NG-423). R.F. also acknowledges the support by the German Academic Exchange Agency (DAAD; 331 4 04 002)

    DNA replication in early S phase pauses near newly activated origins

    Get PDF
    During the S phase of the cell cycle, the entire genome is replicated. There is a high level of orderliness to this process through the temporally and topologically coordinated activation of many replication origins situated along chromosomes. We investigated the program of replication from origins initiating in early S phase by labeling synchronized normal human fibroblasts (NHF1) with nucleotide analogs for various pulse times and measuring labeled tracks in combed DNA fibers. Our analysis showed that replication forks progress 9–35 kilobases from newly initiated origins, followed by a pause in synthesis before replication resumes. Pausing was not observed near origins that initiated in the middle of S phase. No evidence for pausing near origins was found at the beginning of the S phase in glioblastoma T98G cells. Treatment with the S phase checkpoint inhibitor caffeine abrogated pausing in NHF1 cells in early S phase. This suggests that pausing may comprise a novel aspect of the intra-S phase checkpoint pathway or a related new early S checkpoint. Further, it is possible that the loss of this regulatory process in cancer cells such as T98G could be a contributing factor in the genetic instability that typifies cancers

    Mapping of an origin of DNA replication in the promoter of fragile X gene FMR1

    Get PDF
    An origin of bidirectional DNA replication was mapped to the promoter of the FMR1 gene in human chromosome Xq27.3, which has been linked to the fragile X syndrome. This origin is adjacent to a CpG island and overlaps the site of expansion of the triplet repeat (CGG) at the fragile X instability site, FRAXA. The promoter region of FMR2 in the FRAXE site (approximately 600 kb away, in chromosome band Xq28) also includes an origin of replication, as previously described. FMR1 transcripts were detected in foreskin and male fetal lung fibroblasts, while FMR2 transcripts were not. However, both FMR1 and FMR2 were found to replicate late in S phase (approximately six hours into the S phase of normal human fibroblasts). The position of the origin of replication relative to the CGG repeat, and perhaps the late replication of these genes, might be important factors in the susceptibility to triplet repeat amplification at the FRAXA and FRAXE sites
    • 

    corecore