423 research outputs found

    Corticolimbic catecholamines in stress: A computational model of the appraisal of controllability

    Get PDF
    Appraisal of a stressful situation and the possibility to control or avoid it is thought to involve frontal-cortical mechanisms. The precise mechanism underlying this appraisal and its translation into effective stress coping (the regulation of physiological and behavioural responses) are poorly understood. Here, we propose a computational model which involves tuning motivational arousal to the appraised stressing condition. The model provides a causal explanation of the shift from active to passive coping strategies, i.e. from a condition characterised by high motivational arousal, required to deal with a situation appraised as stressful, to a condition characterised by emotional and motivational withdrawal, required when the stressful situation is appraised as uncontrollable/unavoidable. The model is motivated by results acquired via microdialysis recordings in rats and highlights the presence of two competing circuits dominated by different areas of the ventromedial prefrontal cortex: these are shown having opposite effects on several subcortical areas, affecting dopamine outflow in the striatum, and therefore controlling motivation. We start by reviewing published data supporting structure and functioning of the neural model and present the computational model itself with its essential neural mechanisms. Finally, we show the results of a new experiment, involving the condition of repeated inescapable stress, which validate most of the model's prediction

    A computational model of stress coping in rats

    Get PDF
    No abstract availabl

    An exactly solvable phase transition model: generalized statistics and generalized Bose-Einstein condensation

    Full text link
    In this paper, we present an exactly solvable phase transition model in which the phase transition is purely statistically derived. The phase transition in this model is a generalized Bose-Einstein condensation. The exact expression of the thermodynamic quantity which can simultaneously describe both gas phase and condensed phase is solved with the help of the homogeneous Riemann-Hilbert problem, so one can judge whether there exists a phase transition and determine the phase transition point mathematically rigorously. A generalized statistics in which the maximum occupation numbers of different quantum states can take on different values is introduced, as a generalization of Bose-Einstein and Fermi-Dirac statistics.Comment: 17 pages, 2 figure

    Magnetic Fluctuations in a Charge Ordered State of the One-Dimensional Extended Hubbard Model with a Half-Filled Band

    Full text link
    Magnetic properties in a charge ordered state are examined for the extended Hubbard model at half-filling. Magnetic excitations, magnetic susceptibilities and a nuclear spin relaxation rate are calculated with taking account of fluctuations around the mean-field solution. The relevance of the present results to the observation in the 1:1 organic conductors, (TTM-TTP)I3_3, is discussed.Comment: 4 pages, 3 figures, to be published in J. Phys. Soc. Jpn. Vol.71 (2002) No.

    Charge-order transition in the extended Hubbard model on a two-leg ladder

    Full text link
    We investigate the charge-order transition at zero temperature in a two-leg Hubbard ladder with additional nearest-neighbor Coulomb repulsion V using the Density Matrix Renormalization Group technique. We consider electron densities between quarter and half filling. For quarter filling and U=8t, we find evidence for a continuous phase transition between a homogeneous state at small V and a broken-symmetry state with "checkerboard" [wavevector Q=(pi,pi)] charge order at large V. This transition to a checkerboard charge-ordered state remains present at all larger fillings, but becomes discontinuous at sufficiently large filling. We discuss the influence of U/t on the transition and estimate the position of the tricritical points.Comment: 4 pages, 5 figs, minor changes, accepted for publication in PRB R

    Bond-charge Interaction in the extended Hubbard chain

    Full text link
    We study the effects of bond-charge interaction (or correlated hopping) on the properties of the extended ({\it i.e.,} with both on-site (UU) and nearest-neighbor (VV) repulsions) Hubbard model in one dimension at half-filling. Energy gaps and correlation functions are calculated by Lanczos diagonalization on finite systems. We find that, irrespective of the sign of the bond-charge interaction, XX, the charge--density-wave (CDW) state is more robust than the spin--density-wave (SDW) state. A small bond-charge interaction term is enough to make the differences between the CDW and SDW correlation functions much less dramatic than when X=0X=0. For X=tX=t and fixed V<2tV<2t (tt is the uncorrelated hopping integral), there is an intermediate phase between a charge ordered phase and a phase corresponding to singly-occupied sites, the nature of which we clarify: it is characterized by a succession of critical points, each of which corresponding to a different density of doubly-occupied sites. We also find an unusual slowly decaying staggered spin-density correlation function, which is suggestive of some degree of ordering. No enhancement of pairing correlations was found for any XX in the range examined.Comment: 10 pages, 7 PostScript figures, RevTeX 3; to appear in Phys Rev

    High orders of the perturbation theory for hydrogen atom in magnetic field

    Get PDF
    The states of hydrogen atom with principal quantum number n≤3n\le3 and zero magnetic quantum number in constant homogeneous magnetic field H{\cal H} are considered. The coefficients of energy eigenvalues expansion up to 75th order in powers of H2{\cal H}^2 are obtained for these states. The series for energy eigenvalues and wave functions are summed up to H{\cal H} values of the order of atomic magnetic field. The calculations are based on generalization of the moment method, which may be used in other cases of the hydrogen atom perturbation by a polynomial in coordinates potential.Comment: 16 pages, LaTeX, 6 figures (ps, eps

    Classical approach in quantum physics

    Full text link
    The application of a classical approach to various quantum problems - the secular perturbation approach to quantization of a hydrogen atom in external fields and a helium atom, the adiabatic switching method for calculation of a semiclassical spectrum of hydrogen atom in crossed electric and magnetic fields, a spontaneous decay of excited states of a hydrogen atom, Gutzwiller's approach to Stark problem, long-lived excited states of a helium atom recently discovered with the help of PoincareËŠ\acute{\mathrm{e}} section, inelastic transitions in slow and fast electron-atom and ion-atom collisions - is reviewed. Further, a classical representation in quantum theory is discussed. In this representation the quantum states are treating as an ensemble of classical states. This approach opens the way to an accurate description of the initial and final states in classical trajectory Monte Carlo (CTMC) method and a purely classical explanation of tunneling phenomenon. The general aspects of the structure of the semiclassical series such as renormgroup symmetry, criterion of accuracy and so on are reviewed as well. In conclusion, the relation between quantum theory, classical physics and measurement is discussed.Comment: This review paper was rejected from J.Phys.A with referee's comment "The author has made many worthwhile contributions to semiclassical physics, but this article does not meet the standard for a topical review"

    Phase diagram of the quarter-filled extended Hubbard model on a two-leg ladder

    Full text link
    We investigate the ground-state phase diagram of the quarter-filled Hubbard ladder with nearest-neighbor Coulomb repulsion V using the Density Matrix Renormalization Group technique. The ground-state is homogeneous at small V, a ``checkerboard'' charge--ordered insulator at large V and not too small on-site Coulomb repulsion U, and is phase-separated for moderate or large V and small U. The zero-temperature transition between the homogeneous and the charge-ordered phase is found to be second order. In both the homogeneous and the charge-ordered phases the existence of a spin gap mainly depends on the ratio of interchain to intrachain hopping. In the second part of the paper, we construct an effective Hamiltonian for the spin degrees of freedom in the strong-coupling charge-ordered regime which maps the system onto a frustrated spin chain. The opening of a spin gap is thus connected with spontaneous dimerization.Comment: 12 pages, 13 figures, submitted to PRB, presentation revised, new results added (metallic phase at small U and V
    • …
    corecore