401 research outputs found

    Ligating Catalytically Active Peptides onto Microporous Polymers: A General Route Toward Specifically-Functional High Surface Area Platforms

    Get PDF
    A versatile post-synthetic modification strategy to functionalize a high surface area microporous network (MPN-OH) by bio-orthogonal inverse electron-demand Diels-Alder (IEDDA) ligation is presented. While the polymer matrix is modified with a readily accessible norbornene isocyanate (Nor-NCO), a series of functional units presenting the robust asymmetric 1,2,4,5-tetrazine (Tz) allows easy functionalization of the MPN by chemoselective Nor/Tz ligation. A generic route is demonstrated, modulating the internal interfaces by introducing carboxylates, amides or amino acids as well as an oligopeptide d-Pro-Pro-Glu organocatalyst. The MPN-Pz-Peptide construct largely retains the catalytic activity and selectivity in an enantioselective enamine catalysis, demonstrates remarkable availability in different solvents, offers heterogeneous organocatalysis in bulk and shows stability in recycling settings.Peer Reviewe

    Peptide‐based Organocatalyst on Stage: Functionalizing Mesoporous Silica by Tetrazine‐Norbornene Ligation

    Get PDF
    Organocatalysis via the enamine mechanism developed to one of the most relevant tools in carbonyl chemistry and is widely used in asymmetric organic synthesis. In this work, a strategy is presented to conveniently immobilize a peptide-based catalyst on silica supports for use in continuous flow catalysis reactions. A set of different porous silica supports is investigated spanning from mesoporous silica particles with defined pore sizes suitable for packed bed column reactors to silica monoliths with hierarchical meso-macropore spaces. While the silica supports are functionalized with norbornene entities, the peptide-based organocatalyst is modified with a tetrazine moiety, enabling the immobilization via inverse electron-demand Diels-Alder (IEDDA) reaction. The ligation results in catalyst loadings up to 0.2 mmol g-1, without compromising the mesopore network. The catalytic activity of the materials is proven by the asymmetric C−C coupling reaction of n-butanal to ß-nitrostyrene proceeding in high yield and enantioselectivity in both batch and continuous flow setups.Peer Reviewe

    An experimental approach for investigating many-body phenomena in Rydberg-interacting quantum systems

    Full text link
    Recent developments in the study of ultracold Rydberg gases demand an advanced level of experimental sophistication, in which high atomic and optical densities must be combined with excellent control of external fields and sensitive Rydberg atom detection. We describe a tailored experimental system used to produce and study Rydberg-interacting atoms excited from dense ultracold atomic gases. The experiment has been optimized for fast duty cycles using a high flux cold atom source and a three beam optical dipole trap. The latter enables tuning of the atomic density and temperature over several orders of magnitude, all the way to the Bose-Einstein condensation transition. An electrode structure surrounding the atoms allows for precise control over electric fields and single-particle sensitive field ionization detection of Rydberg atoms. We review two experiments which highlight the influence of strong Rydberg--Rydberg interactions on different many-body systems. First, the Rydberg blockade effect is used to pre-structure an atomic gas prior to its spontaneous evolution into an ultracold plasma. Second, hybrid states of photons and atoms called dark-state polaritons are studied. By looking at the statistical distribution of Rydberg excited atoms we reveal correlations between dark-state polaritons. These experiments will ultimately provide a deeper understanding of many-body phenomena in strongly-interacting regimes, including the study of strongly-coupled plasmas and interfaces between atoms and light at the quantum level.Comment: 14 pages, 11 figures; submitted to a special issue of 'Frontiers of Physics' dedicated to 'Quantum Foundation and Technology: Frontiers and Future

    Dynamic structure factor of Luttinger liquids with quadratic energy dispersion and long-range interactions

    Full text link
    We calculate the dynamic structure factor S (omega, q) of spinless fermions in one dimension with quadratic energy dispersion k^2/2m and long range density-density interaction whose Fourier transform f_q is dominated by small momentum-transfers q << q_0 << k_F. Here q_0 is a momentum-transfer cutoff and k_F is the Fermi momentum. Using functional bosonization and the known properties of symmetrized closed fermion loops, we obtain an expansion of the inverse irreducible polarization to second order in the small parameter q_0 / k_F. In contrast to perturbation theory based on conventional bosonization, our functional bosonization approach is not plagued by mass-shell singularities. For interactions which can be expanded as f_q = f_0 + f_0^{2} q^2/2 + O (q^4) with finite f_0^{2} we show that the momentum scale q_c = 1/ | m f_0^{2} | separates two regimes characterized by a different q-dependence of the width gamma_q of the collective zero sound mode and other features of S (omega, q). For q_c << q << k_F we find that the line-shape in this regime is non-Lorentzian with an overall width gamma_q of order q^3/(m q_c) and a threshold singularity at the lower edge.Comment: 33 Revtex pages, 17 figure

    Probabilistic seismic hazard map for Bulgaria as a basis for a new building code

    Get PDF
    A seismic hazard map proposed as part of a new building code for Bulgaria is presented here on basis of the recommendations in EUROCODE 8. <P> Seismic source zones within an area of about 200 km around Bulgaria were constructed considering seismicity, neotectonic and geological development. The most time consuming work was to establish a homogeneous earthquake catalogue out of different catalogues. <P> The probabilistic seismic hazard assessment in terms of intensities is performed following Cornell (1968) with the program EQRISK (see McGuire, 1976), modified by us for use of intensities. To cope with the irregular isoseismals of the Vrancea intermediate depth earthquakes a special attenuation factor is introduced (Ardeleanu et al., 2005), using detailed macroseismic maps of three major earthquakes. <P> The final seismic hazard is the combination of both contributions, of zones with crustal earthquakes and of the Vrancea intermediate depth earthquakes zone. Calculations are done for recurrence periods of 95, 475 and 10 000 years

    Tetrazine-norbornene versus azide-norbornene ligation: evaluating the toolbox for polymer–polymer coupling

    Get PDF
    The selective ligation chemistry of the stable norbornene (Nb) with an asymmetric tetrazine (Tz), accessible in a one-pot reaction is adapted to the ligation of polymer segments yielding block copolymers. The Tz/Nb inverse electron-demand Diels–Alder reaction (IEDDA) is compared with the more classical azide (Az)-norbornene Huisgen 1,3-cycloaddition (CA) to ligate end-functionalized polymers. An endo/exo-norbornene end-functionalized polystyrene (PS1.5k-Nb) and polyethylene glycols with either tetrazine or aryl azido functionalities (PEG3k/5k-Tz, PEG3k/5k-Az) are synthesized. While the Tz/Nb IEDDA proceeds cleanly and leads to full conversion in stochiometric mixtures, the Az/Nb CA requires less effort but suffers from slower coupling kinetics and some side reactions. The coupling of PS1.5k-Nb with PEG3k/5k-Az requires 1H-NMR analysis to follow the kinetics and the products suffer from incomplete conversion as well as slight decomposition of the Az-moieties. In contrast, the ligation of PS1.5k-Nb with PEG3k/5k-Tz is robust. The reaction, which is conveniently monitored by UV/Vis spectroscopy, yields the desired PS-block-PEG in high yields and may offer potential for easy scale-up.Peer Reviewe

    Radiative Transfer in Obliquely Illuminated Accretion Disks

    Full text link
    The illumination of an accretion disk around a black hole or neutron star by the central compact object or the disk itself often determines its spectrum, stability, and dynamics. The transport of radiation within the disk is in general a multi-dimensional, non-axisymmetric problem, which is challenging to solve. Here, I present a method of decomposing the radiative transfer equation that describes absorption, emission, and Compton scattering in an obliquely illuminated disk into a set of four one-dimensional transfer equations. I show that the exact calculation of the ionization balance and radiation heating of the accretion disk requires the solution of only one of the one-dimensional equations, which can be solved using existing numerical methods. I present a variant of the Feautrier method for solving the full set of equations, which accounts for the fact that the scattering kernels in the individual transfer equations are not forward-backward symmetric. I then apply this method in calculating the albedo of a cold, geometrically thin accretion disk.Comment: 16 pages, 3 figures; to appear in The Astrophysical Journa

    Functional renormalization group in the broken symmetry phase: momentum dependence and two-parameter scaling of the self-energy

    Full text link
    We include spontaneous symmetry breaking into the functional renormalization group (RG) equations for the irreducible vertices of Ginzburg-Landau theories by augmenting these equations by a flow equation for the order parameter, which is determined from the requirement that at each RG step the vertex with one external leg vanishes identically. Using this strategy, we propose a simple truncation of the coupled RG flow equations for the vertices in the broken symmetry phase of the Ising universality class in D dimensions. Our truncation yields the full momentum dependence of the self-energy Sigma (k) and interpolates between lowest order perturbation theory at large momenta k and the critical scaling regime for small k. Close to the critical point, our method yields the self-energy in the scaling form Sigma (k) = k_c^2 sigma^{-} (k | xi, k / k_c), where xi is the order parameter correlation length, k_c is the Ginzburg scale, and sigma^{-} (x, y) is a dimensionless two-parameter scaling function for the broken symmetry phase which we explicitly calculate within our truncation.Comment: 9 pages, 4 figures, puplished versio

    Trends in mobile satellite communication

    Get PDF
    Ever since the U.S. Federal Communication Commission opened the discussion on spectrum usage for personal handheld communication, the community of satellite manufacturers has been searching for an economically viable and technically feasible satellite mobile communication system. Hughes Aircraft Company and others have joined in providing proposals for such systems, ranging from low to medium to geosynchronous orbits. These proposals make it clear that the trend in mobile satellite communication is toward more sophisticated satellites with a large number of spot beams and onboard processing, providing worldwide interconnectivity. Recent Hughes studies indicate that from a cost standpoint the geosynchronous satellite (GEOS) is most economical, followed by the medium earth orbit satellite (MEOS) and then by the low earth orbit satellite (LEOS). From a system performance standpoint, this evaluation may be in reverse order, depending on how the public will react to speech delay and collision. This paper discusses the trends and various mobile satellite constellations in satellite communication under investigation. It considers the effect of orbital altitude and modulation/multiple access on the link and spacecraft design
    corecore