826 research outputs found

    Transport coefficients, membrane couplings and universality at extremality

    Full text link
    We present an efficient method for computing the zero frequency limit of transport coefficients in strongly coupled field theories described holographically by higher derivative gravity theories. Hydrodynamic parameters such as shear viscosity and conductivity can be obtained by computing residues of poles of the off-shell lagrangian density. We clarify in which sense these coefficients can be thought of as effective couplings at the horizon, and present analytic, Wald-like formulae for the shear viscosity and conductivity in a large class of general higher derivative lagrangians. We show how to apply our methods to systems at zero temperature but finite chemical potential. Our results imply that such theories satisfy η/s=1/4π\eta/s=1/4\pi universally in the Einstein-Maxwell sector. Likewise, the zero frequency limit of the real part of the conductivity for such systems is shown to be universally zero, and we conjecture that higher derivative corrections in this sector do not modify this result to all orders in perturbation theory.Comment: 29 pages, v2: Small text changes for clarity, typos correcte

    Viscosity Bound and Causality in Superfluid Plasma

    Get PDF
    It was argued by Brigante et.al that the lower bound on the ratio of the shear viscosity to the entropy density in strongly coupled plasma is translated into microcausality violation in the dual gravitational description. Since transport properties of the system characterize its infrared dynamics, while the causality of the theory is determined by its ultraviolet behavior, the viscosity bound/microcausality link should not be applicable to theories that undergo low temperature phase transitions. We present an explicit model of AdS/CFT correspondence that confirms this fact.Comment: 27 pages, 5 figures. References added, typos fixe

    Gauge/string correspondence in curved space

    Full text link
    We discuss Gubser-Klebanov-Polyakov proposal for the gauge/string theory correspondence for gauge theories in curved space. Specifically, we consider Klebanov-Tseytlin cascading gauge theory compactified on S^3. We explain regime when this gauge theory is a small deformation of the superconformal N=1 gauge theory on the world volume of regular D3-branes at the tip of the conifold. We study closed string states on the leading Regge trajectory in this background, and attempt to identify the dual gauge theory twist two operators.Comment: 26 pages, v2: refs adde

    Holographic dual of the Eguchi-Kawai mechanism

    Get PDF
    archiveprefix: arXiv primaryclass: hep-th reportnumber: NORDITA-2014-40, UUITP-03-14, QMUL-PH-14-08 slaccitation: %%CITATION = ARXIV:1404.0225;%%archiveprefix: arXiv primaryclass: hep-th reportnumber: NORDITA-2014-40, UUITP-03-14, QMUL-PH-14-08 slaccitation: %%CITATION = ARXIV:1404.0225;%%archiveprefix: arXiv primaryclass: hep-th reportnumber: NORDITA-2014-40, UUITP-03-14, QMUL-PH-14-08 slaccitation: %%CITATION = ARXIV:1404.0225;%%The work of K.Z. was supported by the ERC advanced grant No 341222, by the Marie Curie network GATIS of the European Union’s FP7 Programme under REA Grant Agreement No 317089, and by the Swedish Research Council (VR) grant 2013-4329. DY acknowledges NORDITA where this work was begun, during his time as a NORDITA fellow

    Transport properties of N=4 supersymmetric Yang-Mills theory at finite coupling

    Full text link
    Gauge theory-string theory duality describes strongly coupled N=4 supersymmetric SU(n) Yang-Mills theory at finite temperature in terms of near extremal black 3-brane geometry in type IIB string theory. We use this correspondence to compute the leading correction in inverse 't Hooft coupling to the shear diffusion constant, bulk viscosity and the speed of sound in the large-n N=4 supersymmetric Yang-Mills theory plasma. The transport coefficients are extracted from the dispersion relation for the shear and the sound wave lowest quasinormal modes in the leading order alpha'-corrected black D3 brane geometry. We find the shear viscosity extracted from the shear diffusion constant to agree with result of [hep-th/0406264]; also, the leading correction to bulk viscosity and the speed of sound vanishes. Our computation provides a highly nontrivial consistency check on the hydrodynamic description of the alpha'-corrected nonextremal black branes in string theory.Comment: 19 pages, LaTe

    Comments on supergravity dual of pure N=1 Super Yang Mills theory with unbroken chiral symmetry

    Get PDF
    Maldacena and Nunez [hep-th/0008001] identified a gravity solution describing pure N=1 Yang-Mills (YM) in the IR. Their (smooth) supergravity solution exhibits confinement and the U(1)_R chiral symmetry breaking of the dual YM theory, while the singular solution corresponds to the gauge theory phase with unbroken U(1)_R chiral symmetry. In this paper we discuss supersymmetric type IIB compactifications on resolved conifolds with torsion. We rederive singular background of [hep-th/0008001] directly from the supersymmetry conditions. This solution is the relevant starting point to study non-BPS backgrounds dual to the high temperature phase of pure YM. We construct the simplest black hole solution in this background. We argue that it has a regular Schwarzschild horizon and provides a resolution of the IR singularity of the chirally symmetric extremal solution as suggested in [hep-th/0011146].Comment: 34 pages, LaTeX, v2: references added, v3: section 2 reduced, minor clarifications, to be published in PR

    Hydrodynamics of fundamental matter

    Full text link
    First and second order transport coefficients are calculated for the strongly coupled N=4 SYM plasma coupled to massless fundamental matter in the Veneziano limit. The results, including among others the value of the bulk viscosity and some relaxation times, are presented at next-to-leading order in the flavor contribution. The bulk viscosity is found to saturate Buchel's bound. This result is also captured by an effective single-scalar five-dimensional holographic dual in the Chamblin-Reall class and it is suggested to hold, in the limit of small deformations, for generic plasmas with gravity duals, whenever the leading conformality breaking effects are driven by marginally (ir)relevant operators. This proposal is then extended to other relations for hydrodynamic coefficients, which are conjectured to be universal for every non-conformal plasma with a dual Chamblin-Reall-like description. Our analysis extends to any strongly coupled gauge theory describing the low energy dynamics of Nc>>1 D3-branes at the tip of a generic Calabi-Yau cone. The fundamental fields are added by means of 1<<Nf<<Nc homogeneously smeared D7-branes.Comment: 24 pages. V2: Important improvements in the discussion of the results in section 1. References adde

    Higher Derivative Corrections to R-charged Black Holes: Boundary Counterterms and the Mass-Charge Relation

    Get PDF
    We carry out the holographic renormalization of Einstein-Maxwell theory with curvature-squared corrections. In particular, we demonstrate how to construct the generalized Gibbons-Hawking surface term needed to ensure a perturbatively well-defined variational principle. This treatment ensures the absence of ghost degrees of freedom at the linearized perturbative order in the higher-derivative corrections. We use the holographically renormalized action to study the thermodynamics of R-charged black holes with higher derivatives and to investigate their mass to charge ratio in the extremal limit. In five dimensions, there seems to be a connection between the sign of the higher derivative couplings required to satisfy the weak gravity conjecture and that violating the shear viscosity to entropy bound. This is in turn related to possible constraints on the central charges of the dual CFT, in particular to the sign of c-a.Comment: 30 pages. v2: references added, some equations simplifie

    Black Holes in Quasi-topological Gravity

    Full text link
    We construct a new gravitational action which includes cubic curvature interactions and which provides a useful toy model for the holographic study of a three parameter family of four- and higher-dimensional CFT's. We also investigate the black hole solutions of this new gravity theory. Further we examine the equations of motion of quasi-topological gravity. While the full equations in a general background are fourth-order in derivatives, we show that the linearized equations describing gravitons propagating in the AdS vacua match precisely the second-order equations of Einstein gravity.Comment: 33 pages, 4 figures; two references adde
    • 

    corecore