1,268 research outputs found

    Estimating specific surface area of fine stream bed sediments from geochemistry

    Get PDF
    Specific surface area (SSA) of headwater stream bed sediments is a fundamental property which determines the nature of sediment surface reactions and influences ecosystem-level, biological processes. Measurements of SSA – commonly undertaken by BET nitrogen adsorption – are relatively costly in terms of instrumentation and operator time. A novel approach is presented for estimating fine (2.5 mg kg−1), four elements were identified as significant predictors of SSA (ordered by decreasing predictive power): V > Ca > Al > Rb. The optimum model from these four elements accounted for 73% of the variation in bed sediment SSA (range 6–46 m2 g−1) with a root mean squared error of prediction – based on leave-one-out cross-validation – of 6.3 m2 g−1. It is believed that V is the most significant predictor because its concentration is strongly correlated both with the quantity of Fe-oxides and clay minerals in the stream bed sediments, which dominate sediment SSA. Sample heterogeneity in SSA – based on triplicate measurements of sub-samples – was a substantial source of variation (standard error = 2.2 m2 g−1) which cannot be accounted for in the regression model. The model was used to estimate bed sediment SSA at the other 1792 sites and at 30 duplicate sites where an extra sediment sample had been collected, 25 m from the original site. By delineating sub-catchments for the headwater sediment sites only those sub-catchments were selected with a dominant (>50% of the sub-catchment area) bedrock formation and land use type; the bedrock and land use classes accounted for 39% and 7% of the variation in bed sediment SSA, respectively. Variation in estimated, fine bed sediment SSA from the paired, duplicate sediment sites was small (2.7 m2 g−1), showing that local variation in SSA at stream sites is modest when compared to that between catchments. How the approach might be applied in other environments and its potential limitations are discussed

    Dynamic Scaling of an Adsorption-Diffusion Process on Fractals

    Full text link
    A dynamic scaling of a diffusion process involving the Langmuir type adsorption is studied. We find dynamic scaling functions in one and two dimensions and compare them with direct numerical simulations, and we further study the dynamic scaling law on fractal surfaces. The adsorption-diffusion process obeys the fracton dynamics on the fractal surfaces.Comment: 9 pages, 7 figure

    Modeling columnar thin films as platforms for surface-plasmonic-polaritonic optical sensing

    Full text link
    Via exploitation of surface plasmon polaritons (SPPs), columnar thin films (CTFs) are attractive potential platforms for optical sensing as their relative permittivity dyadic and porosity can be tailored to order. Nanoscale model parameters of a CTF were determined from its measured relative permittivity dyadic, after inverting the Bruggeman homogenization formalism. These model parameters were then used to determine the relative permittivity dyadic of a fluid-infiltrated CTF. Two boundary-value problems were next solved: the first relating to SPP-wave propagation guided by the planar interface of a semi-infinitely thick metal and a semi-infinitely thick CTF, and the second to the plane-wave response of the planar interface of a finitely thick metallic layer and a CTF in a modified Kretschmann configuration. Numerical studies revealed that SPP waves propagate at a lower phase speed and with a shorter propagation length, if the fluid has a larger refractive index. Furthermore, the angle of incidence required to excite an SPP wave in a modified Kretschmann configuration increases as the refractive index of the fluid increases

    Predicting protein decomposition: the case of aspartic-acid racemization kinetics

    Get PDF
    The increase in proportion of the non-biological (D-) isomer of aspartic acid (Asp) relative to the L- isomer has been widely used in archaeology and geochemistry as a tool for dating. The method has proved controversial, particularly when used for bones. The non-linear kinetics of Asp racemization have prompted a number of suggestions as to the underlying mechanism(s) and have led to the use of mathe- matical transformations which linearize the increase in D-Asp with respect to time. Using one example, a suggestion that the initial rapid phase of Asp racemization is due to a contribution from asparagine (Asn), we demonstrate how a simple model of the degradation and racemization of Asn can be used to predict the observed kinetics. A more complex model of peptide bound Asx (Asn+Asp) racemization, which occurs via the formation of a cyclic succinimide (Asu), can be used to correctly predict Asx racemi- zation kinetics in proteins at high temperatures (95-140 °C). The model fails to predict racemization kinetics in dentine collagen at 37 °C. The reason for this is that Asu formation is highly conformation dependent and is predicted to occur extremely slowly in triple helical collagen. As conformation strongly in£uences the rate of Asu formation and hence Asx racemization, the use of extrapolation from high temperatures to estimate racemization kinetics of Asx in proteins below their denaturation temperature is called into question. In the case of archaeological bone, we argue that the D:L ratio of Asx re£ects the proportion of non- helical to helical collagen, overlain by the e¡ects of leaching of more soluble (and conformationally unconstrained) peptides. Thus, racemization kinetics in bone are potentially unpredictable, and the proposed use of Asx racemization to estimate the extent of DNA depurination in archaeological bones is challenged

    Influence of the initial chemical conditions on the rational design of silica particles

    Get PDF
    The influence of the water content in the initial composition on the size of silica particles produced using the Stöber process is well known. We have shown that there are three morphological regimes defined by compositional boundaries. At low water levels (below stoichiometric ratio of water:tetraethoxysilane), very high surface area and aggregated structures are formed; at high water content (>40 wt%) similar structures are also seen. Between these two boundary conditions, discrete particles are formed whose size are dictated by the water content. Within the compositional regime that enables the classical Stöber silica, the structural evolution shows a more rapid attainment of final particle size than the rate of formation of silica supporting the monomer addition hypothesis. The clearer understanding of the role of the initial composition on the output of this synthesis method will be of considerable use for the establishment of reliable reproducible silica production for future industrial adoption

    Cations extraction of sandy-clay soils from Cavado valley, Portugal, using sodium salts solutions

    Get PDF
    Cases of contamination by metals in the water wells of the Cavado Valley in north-west Portugal can be attributed to the heavy leaching of clay soils due to an excess of nitrogen resulting from the intensive use of fertilisers in agricultural areas. This work focuses on the natural weathering characteristics of soils, particularly the clay material, through the study of samples collected near the River Cavado. Samples taken from various sites, after physico-chemical characterisation, were subjected to clay dissolution tests, using sodium salts of different ionic forces, to detect the relationship between certain physico-chemical parameters of water, such as pH, nitrate, chloride and sulphate content, in the dissolution of clay and the subsequent extraction of such cations as Al, Fe and K. In acidic sandy clay soils, the mineralogical composition of which was characterised by a predominance of quartz, micas, kaolinite and K-feldspars, decreases of the clay material/water pH ratio increases dissolution of the micaceous and K-feldspars phases. The presence of nitrates in the aqueous solution apparently advanced the extraction of all three cations Al, Fe and K. The specific surface area of the clay material showed a significant correlation with the main kinetic parameters of cation extraction.Têm ocorrido casos de contaminações de águas de poços, por metais, no vale do Rio Cávado, região noroeste de Portugal. A princípio, poderiam ser explicáveis pela elevada lixiviação dos solos arenoargilosos da região, quando da prática de adubações intensivas de nitrogênio em áreas agrícolas. Assim, estudaram-se as características do intemperismo natural dos solos, particularmente da fração argila, característica da margem norte do rio Cávado. Coletaram-se amostras de vários locais, que foram submetidas, após caracterização físico-química, a ensaios de dissolução a partir de soluções de sais de sódio com diferentes forças iônicas. O objetivo foi observar as relações de determinados parâmetros físico-químicos da água, tais como: pH, nitratos, cloretos e sulfatos na dissolução das argilas e a conseqüente extração de espécies químicas tais como Al, K e Fe. Para solos areno-argilosos, ácidos, cuja composição mineralógica se caracteriza por um predomínio de quartzo, micas, caulinita e feldspato-K, o abaixamento do pH da suspensão solo/água promove a solubilização das fases micáceas e feldspáticas. A presença do nitrato nas soluções aquosas promoveu aparentemente a extração de todos os três cátions: Al, K e Fe. O efeito da área superfícial específica das partículas dos solos condicionou fortemente vários dos parâmetros cinéticos estudados relativos à extração dos cátions.(undefined
    corecore