960 research outputs found

    Evaluation of Ingenol mebutate efficacy for the treatment of actinic keratosis with Antera 3D camera

    Get PDF
    OBJECTIVE: Cumulative exposure of the skin to ultraviolet radiation promotes mutation in keratinocytes and their abnormal growth led to the formation of scaly lesions, called actinic keratoses (AKs). Its incidence is growing at an emerging rate, becoming a worldwide problem especially for occupational ultraviolet (UV) rays exposure. Detectable lesions are often associated with ïŹeld changes, where the surrounding skin is altered and subclinical lesions may be present. Thus, a ïŹeld-directed therapy, such as topical treatment, should be preferred for the prevention of invasive cancer development. A retrospective analysis was made, evaluating the efficacy of ingenol-mebutate gel, using a novel device the 3D in vivo optical skin Imaging (Antera 3D, Miravex, Ireland). PATIENTS AND METHODS: We included all patients with multiple non-hypertrophic Aks, to whom it was prescribed ingenol-mebutate gel, applied at the dosages of 0.015 for lesions in the scalp/face (for 3 consecutive days) and at the dosage of 0.05% for lesions in the trunk and/or extremities (for 2 consecutive days). RESULTS: A reduction of the lesions and of median hemoglobin levels, after a follow-up of 60 days, was observed in 100% of patients. CONCLUSIONS: Ingenol mebutate gel, the last topical molecule appeared in the Italian market showed its efficacy using Antera 3D also in terms of hemoglobin reduction. Therefore, this camera could be considered an useful tool for the identification of the area to be treated and for therapeutic follow-up

    Power-law decay in first-order relaxation processes

    Full text link
    Starting from a simple definition of stationary regime in first-order relaxation processes, we obtain that experimental results are to be fitted to a power-law when approaching the stationary limit. On the basis of this result we propose a graphical representation that allows the discrimination between power-law and stretched exponential time decays. Examples of fittings of magnetic, dielectric and simulated relaxation data support the results.Comment: to appear in Phys. Rev. B; 4 figure

    Scutellaria caucasica A. Ham.: Morphological features and headspace characterization

    Get PDF
    In the context of a wide research project, a micromorphological and phytochemical characterization was performed on the vegetative and reproductive organs of Scutellaria caucasica A. Ham. (Lamiaceae), cultivated at the Ghirardi Botanic Garden (Toscolano Maderno, BS, Lombardy, Italy). The morphological survey revealed the presence of both non-glandular and glandular trichomes. The latter belonged to three different morphotypes: peltate, short-stalked and long-stalked capitate. Histochemical assays demonstrated that the terpenes biosynthesis mainly took place in the peltates, while short-stalked capitates secreted only polysaccharides; the long-stalked ones mainly produced polysaccharides, coupled with terpene and polyphenolic fractions. An element of novelty was represented by the characterization of the VOC emission profile. Leaves and flowers showed differences in their emissions: the floral profile had a higher number of compounds than that of the leaves (37 vs 29), with a higher heterogeneity. The almost totality of the leaf profile was characterized by sesquiterpene hydrocarbons (98.8 %), while the flowers presented a more varied composition, with sesquiterpene hydrocarbons (87.2 %), monoterpenes (10.4 % oxygenated, 1.8 % hydrocarbons) and non-terpenes derivatives (0.6 %). The most abundant compounds were \u3b3-muurolene (42.6 %) and \u3b2-caryophyllene (35.0 %) in the leaves and in the flowers, respectively. In the flower headspace, 16 exclusive compounds were identified, among which germacrene D (31.7 %) dominated; leaves had 8 exclusive compounds, with valencene (1.8 %) as the most represented one. 21 common compounds were revealed: \u3b2-caryophyllene (34.1 % leaves; 35.0 % flowers), \u3b1-humulene (3.0 % leaves; 3.1 % flowers), alloaromadendrene (2.4 % leaves; 1.0 % flowers), \u3b1-copaene (2.1 % leaves; 2.7 % flowers) and \u3b2-copaene (2.2 % leaves; 1.5 % flowers) were the most abundant ones. \u3b3-Muurolene relative abundances (42.6 % leaves; 0.7 % flowers) were very different between the two profiles. Overall, this work represented the first multidisciplinary study on S. caucasica, combining a scientific research approach with the policies of the Open Science

    Electrochemical Characterization of Charge Storage at Anodes for Sodium-Ion Batteries Based on Corncob Waste-Derived Hard Carbon and Binder

    Get PDF
    Sodium-ion batteries (SIBs) represent a potential alternative to lithium-ion batteries in large-scale energy storage applications. To improve the sustainability of SIBs, the utilization of anode carbonaceous materials produced from biomass and the selection of a bio-based binder allowing an aqueous electrode processing are fundamental. Herein, corncobs are used as raw material for the preparation of hard carbon and it is also used as cellulose sources for the synthesis of carboxymethyl cellulose (CMC) binder. The corncob-derived electrodes deliver a high discharge capacity of around 264 mAhg(-1) at 1 C (300 mAg(-1)), with promising capacity retention (84 % after 100 cycles) and good rate capability. Additionally, this work expands the fundamental insight of the sodium storage behavior of Hard Carbons through an electrochemical approach, suggesting that the reaction mechanism is controlled by capacitive process in the sloping voltage region, while the diffusion-controlled intercalation is the predominant process in the low-voltage plateau
    • 

    corecore