32 research outputs found

    Genetic Analysis of Anti-Amoebae and Anti-Bacterial Activities of the Type VI Secretion System in Vibrio cholerae

    Get PDF
    A type VI secretion system (T6SS) was recently shown to be required for full virulence of Vibrio cholerae O37 serogroup strain V52. In this study, we systematically mutagenized each individual gene in T6SS locus and characterized their functions based on expression and secretion of the hemolysin co-regulated protein (Hcp), virulence towards amoebae of Dictyostelium discoideum and killing of Escherichia coli bacterial cells. We group the 17 proteins characterized in the T6SS locus into four categories: twelve (VipA, VipB, VCA0109–VCA0115, ClpV, VCA0119, and VasK) are essential for Hcp secretion and bacterial virulence, and thus likely function as structural components of the apparatus; two (VasH and VCA0122) are regulators that are required for T6SS gene expression and virulence; another two, VCA0121 and valine-glycine repeat protein G 3 (VgrG-3), are not essential for Hcp expression, secretion or bacterial virulence, and their functions are unknown; the last group is represented by VCA0118, which is not required for Hcp expression or secretion but still plays a role in both amoebae and bacterial killing and may therefore be an effector protein. We also showed that the clpV gene product is required for Dictyostelium virulence but is less important for killing E. coli. In addition, one vgrG gene (vgrG-2) outside of the T6SS gene cluster was required for bacterial killing but another (vgrG-1) was not. However, a bacterial killing defect was observed when vgrG-1 and vgrG-3 were both deleted. Several genes encoded in the same putative operon as vgrG-1 and vgrG-2 also contribute to virulence toward Dictyostelium but have a smaller effect on bacterial killing. Our results provide new insights into the functional requirements of V. cholerae's T6SS in the context of secretion as well as killing of bacterial and eukaryotic phagocytic cells

    Contribution of the Type VI Secretion System Encoded in SPI-19 to Chicken Colonization by Salmonella enterica Serotypes Gallinarum and Enteritidis

    Get PDF
    Salmonella Gallinarum is a pathogen with a host range specific to poultry, while Salmonella Enteritidis is a broad host range pathogen that colonizes poultry sub-clinically but is a leading cause of gastrointestinal salmonellosis in humans and many other species. Despite recent advances in our understanding of the complex interplay between Salmonella and their hosts, the molecular basis of host range restriction and unique pathobiology of Gallinarum remain largely unknown. Type VI Secretion System (T6SS) represents a new paradigm of protein secretion that is critical for the pathogenesis of many Gram-negative bacteria. We recently identified a putative T6SS in the Salmonella Pathogenicity Island 19 (SPI-19) of Gallinarum. In Enteritidis, SPI-19 is a degenerate element that has lost most of the T6SS functions encoded in the island. In this work, we studied the contribution of SPI-19 to the colonization of Salmonella Gallinarum strain 287/91 in chickens. Non-polar deletion mutants of SPI-19 and the clpV gene, an essential T6SS component, colonized the ileum, ceca, liver and spleen of White Leghorn chicks poorly compared to the wild-type strain after oral inoculation. Return of SPI-19 to the ΔSPI-19 mutant, using VEX-Capture, complemented this colonization defect. In contrast, transfer of SPI-19 from Gallinarum to Enteritidis resulted in transient increase in the colonization of the ileum, liver and spleen at day 1 post-infection, but at days 3 and 5 post-infection a strong colonization defect of the gut and internal organs of the experimentally infected chickens was observed. Our data indicate that SPI-19 and the T6SS encoded in this region contribute to the colonization of the gastrointestinal tract and internal organs of chickens by Salmonella Gallinarum and suggest that degradation of SPI-19 T6SS in Salmonella Enteritidis conferred an advantage in colonization of the avian host

    Burkholderia Type VI Secretion Systems Have Distinct Roles in Eukaryotic and Bacterial Cell Interactions

    Get PDF
    Bacteria that live in the environment have evolved pathways specialized to defend against eukaryotic organisms or other bacteria. In this manuscript, we systematically examined the role of the five type VI secretion systems (T6SSs) of Burkholderia thailandensis (B. thai) in eukaryotic and bacterial cell interactions. Consistent with phylogenetic analyses comparing the distribution of the B. thai T6SSs with well-characterized bacterial and eukaryotic cell-targeting T6SSs, we found that T6SS-5 plays a critical role in the virulence of the organism in a murine melioidosis model, while a strain lacking the other four T6SSs remained as virulent as the wild-type. The function of T6SS-5 appeared to be specialized to the host and not related to an in vivo growth defect, as ΔT6SS-5 was fully virulent in mice lacking MyD88. Next we probed the role of the five systems in interbacterial interactions. From a group of 31 diverse bacteria, we identified several organisms that competed less effectively against wild-type B. thai than a strain lacking T6SS-1 function. Inactivation of T6SS-1 renders B. thai greatly more susceptible to cell contact-induced stasis by Pseudomonas putida, Pseudomonas fluorescens and Serratia proteamaculans—leaving it 100- to 1000-fold less fit than the wild-type in competition experiments with these organisms. Flow cell biofilm assays showed that T6S-dependent interbacterial interactions are likely relevant in the environment. B. thai cells lacking T6SS-1 were rapidly displaced in mixed biofilms with P. putida, whereas wild-type cells persisted and overran the competitor. Our data show that T6SSs within a single organism can have distinct functions in eukaryotic versus bacterial cell interactions. These systems are likely to be a decisive factor in the survival of bacterial cells of one species in intimate association with those of another, such as in polymicrobial communities present both in the environment and in many infections

    Desenvolvimento de método de preparo de amostra para determinação de B, Ba, Pb e Zn em amostras de celulose Kraft por MIP OES

    No full text
    Este trabalho tem como objetivo o desenvolvimento e a aplicação de um método de preparo de amostra simples e eficaz para a determinação de elementos possivelmente tóxicos como B, Ba, Pb e Zn por MIP OES em amostras de polpa de celulose Kraf

    Regulation of Type VI Secretion System during Burkholderia pseudomallei Infection â–¿

    No full text
    Type III and type VI secretion systems (T3SSs and T6SSs, respectively) are critical virulence determinants in several Gram-negative pathogens. In Burkholderia pseudomallei, the T3SS-3 and T6SS-1 clusters have been implicated in bacterial virulence in mammalian hosts. We recently discovered a regulatory cascade that coordinately controls the expression of T3SS-3 and T6SS-1. BsaN is a central regulator located within T3SS-3 for the expression of T3SS-3 effectors and regulators for T6SS-1 such as VirA-VirG (VirAG) and BprC. Whereas T6SS-1 gene expression was completely dependent on BprC when bacteria were grown in medium, the expression inside host cells was dependent on the two-component sensor-regulator VirAG, with the exception of the tssAB operon, which was dependent primarily on BprC. VirAG and BprC initiate different transcriptional start sites within T6SS-1, and VirAG is able to activate the hcp1 promoter directly. We also provided novel evidence that virAG, bprC, and tssAB are critical for T6SS-1 function in macrophages. Furthermore, virAG and bprC regulator mutants were avirulent in mice, demonstrating the absolute dependence of T6SS-1 expression on these regulators in vivo

    Type VI secretion requires a dynamic contractile phage tail-like structure

    Get PDF
    Type VI secretion systems are bacterial virulence-associated nanomachines composed of proteins that are evolutionarily related to components of bacteriophage tails. Here we show that protein secretion by the type VI secretion system of Vibrio cholerae requires the action of a dynamic intracellular tubular structure that is structurally and functionally homologous to contractile phage tail sheath. Time-lapse fluorescence light microscopy reveals that sheaths of the type VI secretion system cycle between assembly, quick contraction, disassembly and re-assembly. Whole-cell electron cryotomography further shows that the sheaths appear as long tubular structures in either extended or contracted conformations that are connected to the inner membrane by a distinct basal structure. These data support a model in which the contraction of the type VI secretion system sheath provides the energy needed to translocate proteins out of effector cells and into adjacent target cells
    corecore