36 research outputs found

    Osmoregulation and salinity-induced oxidative stress: is oxidative adaptation determined by gill function?

    Get PDF
    Osmoregulating decapods such as the Mediterranean green crab Carcinus aestuarii possess two groups of spatially segregated gills: anterior gills serve mainly respiratory purposes, while posterior gills contain osmoregulatory structures. The co-existence of similar tissues serving different functions allows the study of differential adaptation, in terms of free radical metabolism, upon salinity change. Crabs were immersed for 2 weeks in seawater (SW, 37 ppt), diluted SW (dSW, 10 ppt) and concentrated SW (cSW, 45 ppt). Exposure to dSW was the most challenging condition, elevating respiration rates of whole animals and free radical formation in hemolymph (assessed fluorometrically using C-H2DFFDA). Further analyses considered anterior and posterior gills separately, and the results showed that posterior gills are the main tissues fueling osmoregulatory-related processes because their respiration rates in dSW were 3.2-fold higher than those of anterior gills, and this was accompanied by an increase in mitochondrial density (citrate synthase activity) and increased levels of reactive oxygen species (ROS) formation (1.4-fold greater, measured through electron paramagnetic resonance). Paradoxically, these posterior gills showed undisturbed caspase 3/7 activity, used here as a marker for apoptosis. This may only be due to the high antioxidant protection that posterior gills benefit from [superoxide dismutase (SOD) in posterior gills was over 6 times higher than in anterior gills]. In conclusion, osmoregulating posterior gills are better adapted to dSW exposure than respiratory anterior gills because they are capable of controlling the deleterious effects of the ROS production resulting from this salinity-induced stress.journal articleresearch support, non-u.s. gov't2016 Jan2015 11 13importe

    Genomic Characterization of the Taylorella Genus

    Get PDF
    The Taylorella genus comprises two species: Taylorella equigenitalis, which causes contagious equine metritis, and Taylorella asinigenitalis, a closely-related species mainly found in donkeys. We herein report on the first genome sequence of T. asinigenitalis, analyzing and comparing it with the recently-sequenced T. equigenitalis genome. The T. asinigenitalis genome contains a single circular chromosome of 1,638,559 bp with a 38.3% GC content and 1,534 coding sequences (CDS). While 212 CDSs were T. asinigenitalis-specific, 1,322 had orthologs in T. equigenitalis. Two hundred and thirty-four T. equigenitalis CDSs had no orthologs in T. asinigenitalis. Analysis of the basic nutrition metabolism of both Taylorella species showed that malate, glutamate and alpha-ketoglutarate may be their main carbon and energy sources. For both species, we identified four different secretion systems and several proteins potentially involved in binding and colonization of host cells, suggesting a strong potential for interaction with their host. T. equigenitalis seems better-equipped than T. asinigenitalis in terms of virulence since we identified numerous proteins potentially involved in pathogenicity, including hemagluttinin-related proteins, a type IV secretion system, TonB-dependent lactoferrin and transferrin receptors, and YadA and Hep_Hag domains containing proteins. This is the first molecular characterization of Taylorella genus members, and the first molecular identification of factors potentially involved in T. asinigenitalis and T. equigenitalis pathogenicity and host colonization. This study facilitates a genetic understanding of growth phenotypes, animal host preference and pathogenic capacity, paving the way for future functional investigations into this largely unknown genus

    Structural basis of ABCF-mediated resistance to pleuromutilin, lincosamide, and streptogramin A antibiotics in Gram-positive pathogens

    Get PDF
    he antibiotic target. One class of such proteins are the antibiotic resistance (ARE) ATP-binding cassette (ABC) proteins of the F-subtype (ARE-ABCFs), which are widely distributed throughout Gram-positive bacteria and bind the ribosome to alleviate translational inhibition from antibiotics that target the large ribosomal subunit. Here, we present single-particle cryo-EM structures of ARE-ABCF-ribosome complexes from three Gram-positive pathogens: Enterococcus faecalis LsaA, Staphylococcus haemolyticus VgaALC and Listeria monocytogenes VgaL. Supported by extensive mutagenesis analysis, these structures enable a general model for antibiotic resistance mediated by these ARE-ABCFs to be proposed. In this model, ABCF binding to the antibiotic-stalled ribosome mediates antibiotic release via mechanistically diverse long-range conformational relays that converge on a few conserved ribosomal RNA nucleotides located at the peptidyltransferase center. These insights are important for the future development of antibiotics that overcome such target protection resistance mechanisms

    Conserved TCR usage by HLA-Cw*1601-restricted T cell clones recognizing melanoma antigens

    No full text
    In this study we determined TCR alpha and beta chain nucleotide sequences of HLA-Cw*1601-restricted cytotoxic T lymphocyte (CTL) clones obtained from the peripheral blood lymphocytes (PBL) of a melanoma patient. These clones were previously shown to be involved in the recognition of melanoma-associated antigenic epitopes SAYGEPRKL and AARAVFLAL encoded by gene MAGE-1 and BAGE respectively. All (3/3) anti-MAGE-1 CTL clones displayed TCRBV5 usage and one clonotype was found twice, >1 year apart, in patient's PBL. Two out of three anti-BAGE CTL clones showed the same TCRAV/AJ and TCRBV/BJ combinations and differed in the alpha chain CDR3 for two residues and in the beta chain CDR3 for a single nucleotide which, however, did not change translation, These results suggest a pattern of TCR conservation in CTL selected for recognition of MAGE-1 or BAGE peptides on the autologous melanoma

    Cytolytic T-cell responses of cancer patients vaccinated with a MAGE antigen

    No full text
    'Cancer-germline' genes such as the MAGE gene family are expressed in many tumors and in male germline cells but not in normal tissues. They encode shared tumor-specific antigens, which have been used in therapeutic vaccination trials of metastatic melanoma patients. To establish whether there is a correlation between tumoral regressions and T-cell responses against the vaccine antigen, we evaluated the responses of patients vaccinated with a MAGE-3 antigenic peptide or a recombinant virus coding for the peptide. Blood lymphocytes were stimulated with antigenic peptide followed by detection with tetramer, T-cell cloning, and TCR analysis. In 4/9 regressor patients and in 1/14 progressors we found a low level, usually monoclonal cytolytic T lymphocyte response against the MAGE-3 peptide
    corecore