49,132 research outputs found
Optical properties of CO2 ice and CO2 snow from ultraviolet to infrared: Application to frost deposits and clouds on Mars
Researchers found that it is possible to grow large clear samples of CO2 ice at Mars-like temperatures of 150-170K if a temperature controlled refrigerator is connected to an isolated two-phase pure CO2 system. They designed a chamber for transmission measurements whose optical path between the 13mm diameter window is adjustable from 1.6mm to 107mm. This will allow measurements of linear absorption down to less than 0.01 cm (exp -1). A preliminary transmission spectrum of a thick sample of CO2 ice in the near infrared was obtained. Once revised optical constants have been determined as a function of wavelength and temperature, they can be applied to spectral reflectance/emissivity models for CO2 snow surfaces, both pure and contaminated with dust and water ice, using previously established approaches. It will be useful, also, to develop an infrared scattering-emission cloud radiance model (especially as viewed from near the limb) in order to develop a strategy for the identification of CO2 cloud layers by the atmospheric infrared radiometer instrument on the Mars Observer
Effective-range approach and scaling laws for electromagnetic strength in neutron-halo nuclei
We study low-lying multipole strength in neutron-halo nuclei. The strength
depends only on a few low-energy constants: the neutron separation energy, the
asymptotic normalization coefficient of the bound state wave function, and the
scattering length that contains the information on the interaction in the
continuum. The shape of the transition probability shows a characteristic
dependence on few scaling parameters and the angular momenta. The total E1
strength is related to the root-mean-square radius of the neutron wave function
in the ground state and shows corresponding scaling properties. We apply our
approach to the E1 strength distribution of 11Be.Comment: 4 pages, 1 figure (modified), additional table, extended discussion
of example, accepted for publication in Phys. Rev. Let
Self-Affinity in the Gradient Percolation Problem
We study the scaling properties of the solid-on-solid front of the infinite
cluster in two-dimensional gradient percolation. We show that such an object is
self affine with a Hurst exponent equal to 2/3 up to a cutoff-length
proportional to the gradient to the power (-4/7). Beyond this length scale, the
front position has the character of uncorrelated noise. Importantly, the
self-affine behavior is robust even after removing local jumps of the front.
The previously observed multi affinity, is due to the dominance of overhangs at
small distances in the structure function. This is a crossover effect.Comment: 4 pages, 4 figure
Isochrones and Luminosity Functions for Old White Dwarfs
Using a new grid of models of cooling white dwarfs, we calculate isochrones
and luminosity functions in the Johnson-Kron/Cousins and HST filter sets for
systems containing old white dwarfs. These new models incorporate a non-grey
atmosphere which is necessary to properly describe the effects of molecular
opacity at the cool temperatures of old white dwarfs. The various functions
calculated and extensively tabulated and plotted are meant to be as utilitarian
as possible for observers so all results are listed in quantities that
observers will obtain. The tables and plots developed should eventually prove
critical in interpreting the results of HST's Advanced Camera observations of
the oldest white dwarfs in nearby globular clusters, in understanding the
results of searches for old white dwarfs in the Galactic halo, and in
determining ages for star clusters of all ages using white dwarfs. As a
practical application we demonstrate the use of these results by deriving the
white dwarf cooling age of the old Galactic cluster M67.Comment: 7 pages, 8 tables, accepted for publication in the Astrophysical
Journa
A method to find unstable periodic orbits for the diamagnetic Kepler Problem
A method to determine the admissibility of symbolic sequences and to find the
unstable periodic orbits corresponding to allowed symbolic sequences for the
diamagnetic Kepler problem is proposed by using the ordering of stable and
unstable manifolds. By investigating the unstable periodic orbits up to length
6, a one to one correspondence between the unstable periodic orbits and their
corresponding symbolic sequences is shown under the system symmetry
decomposition
Surface melting of the vortex lattice
We discuss the effect of an (ab)-surface on the melting transition of the
pancake-vortex lattice in a layered superconductor within a density functional
theory approach. Both discontinuous and continuous surface melting are
predicted for this system, although the latter scenario occupies the major part
of the low-field phase diagram. The formation of a quasi-liquid layer below the
bulk melting temperature inhibits the appearance of a superheated solid phase,
yielding an asymmetric hysteretic behavior which has been seen in experiments.Comment: 4 pages, 3 figure
Coarse-graining diblock copolymer solutions: a macromolecular version of the Widom-Rowlinson model
We propose a systematic coarse-grained representation of block copolymers,
whereby each block is reduced to a single ``soft blob'' and effective intra- as
well as intermolecular interactions act between centres of mass of the blocks.
The coarse-graining approach is applied to simple athermal lattice models of
symmetric AB diblock copolymers, in particular to a Widom-Rowlinson-like model
where blocks of the same species behave as ideal polymers (i.e. freely
interpenetrate), while blocks of opposite species are mutually avoiding walks.
This incompatibility drives microphase separation for copolymer solutions in
the semi-dilute regime. An appropriate, consistent inversion procedure is used
to extract effective inter- and intramolecular potentials from Monte Carlo
results for the pair distribution functions of the block centres of mass in the
infinite dilution limit.Comment: To be published in mol.phys(2005
- …