23,161 research outputs found
Proton NMR relaxometry as a useful tool to evaluate swelling processes in peat soils
Dramatic physical and physico-chemical changes in soil properties may arise due to temperature and moisture variations as well as swelling of soil organic matter (SOM) under constant conditions. Soil property variations may influence sorption/desorption and transport processes of environmental contaminants and nutrients in natural-organic-matterrich soils. Notwithstanding the studies reported in literature, a mechanistic model for SOM swelling is unavailable yet. The objective of the present study was the evaluation of the swelling of peat soils, considered as SOM models, by 1H NMR relaxometry and differential scanning calorimetry (DSC). Namely, information on the processes governing physical and physicochemical changes of peat during re-hydration were collected. The basic hypothesis of the present study was that the changes are slow and may affect water state as well as amounts of different water types into the peats. For this reason, such changes can be evidenced through the variations of mobility and thermal behaviour of the involved H2O molecules by using 1H NMR relaxometry and DSC. According to the experimental results, a mechanistic model, describing the fundamental processes of peat swelling, was obtained. Two different peats re-wetted at three temperatures were used. The swelling process was monitored by measuring spin-spin relaxation time (T2) over a hydration time of several months. Moreover, DSC, T1 – T2 and T2 – D correlation measurements were done at the beginning and at the end of the hydration. Supplementary investigations were also done in order to discriminate between the swelling effects and the contributions from soil solution, internal magnetic field gradients and/or soil microorganisms to proton relaxation. All the results revealed peat swelling. It was evidenced by pore size distribution changes, volumetric expansion and redistribution of water, increasing amounts of nonfreezable and loosely bound water, as well as formation of gel phases and reduction of the translational and rotational mobility of H2O molecules. All the findings implied that changes of the physical and physicochemical properties of peats were obtained. In particular, three different processes having activation energies comprised in the interval 5 – 50 kJ mol-1 were revealed. The mechanistic model which was, then, developed included water reorientation in bound water phases, water diffusion into the peat matrix and reorientation of SOM chains as fundamental processes governing SOM swelling. This study is of environmental significance in terms of re-naturation and re-watering of commercially applied peatlands and of sorption/desorption and transport processes of pollutants and nutrients in natural organic matter rich soil
Metastatic breast cancer - age has a significant effect on survival
The data on 217 elderly (aged ≥ 65 years) and 209 middleaged postmenopausal patients with metastatic breast cancer treated in the Department of Medical Oncology, University of Pretoria, from 1976 to 1985 were analysed to determine the effect of age on survival. When considered as a group, the elderly have a more favourable prognosis (median survival 20,3 months) than the middle-aged (median survival 15,54 months) (p= 0,0457). Multivariate age subset analysis (taking into account all other major prognostic factors) reveal a distinct bimodal pattern. The median survival of patients aged 45 - 54 years is 21,2 months and decreases to 16,2 months for patients aged 55 - 64 years (P= 0,08; Cox model). The median survival improves again to 24,6 months for patients aged 64 - 74 years (P= 0,0001; Cox model), followed by an apparent but non-significant decrease to 17,1 months in the very old (aged 75 - 84 years) (P = 0,52; Cox model). The more favourable prognosis in the elderly dictates effective non-toxic treatment
Energy metabolism in human pluripotent stem cells and their differentiated counterparts
Background: Human pluripotent stem cells have the ability to generate all cell types present in the adult organism, therefore harboring great potential for the in vitro study of differentiation and for the development of cell-based therapies. Nonetheless their use may prove challenging as incomplete differentiation of these cells might lead to tumoregenicity. Interestingly, many cancer types have been reported to display metabolic modifications with features that might be similar to stem cells. Understanding the metabolic properties of human pluripotent stem cells when compared to their differentiated counterparts can thus be of crucial importance. Furthermore recent data has stressed distinct features of different human pluripotent cells lines, namely when comparing embryo-derived human embryonic stem cells (hESCs) and induced pluripotent stem cells (IPSCs) reprogrammed from somatic cells. Methodology/Principal Findings: We compared the energy metabolism of hESCs, IPSCs, and their somatic counterparts. Focusing on mitochondria, we tracked organelle localization and morphology. Furthermore we performed gene expression analysis of several pathways related to the glucose metabolism, including glycolysis, the pentose phosphate pathway and the tricarboxylic acid (TCA) cycle. In addition we determined oxygen consumption rates (OCR) using a metabolic extracellular flux analyzer, as well as total intracellular ATP levels by high performance liquid chromatography (HPLC). Finally we explored the expression of key proteins involved in the regulation of glucose metabolism. Conclusions/Findings: Our results demonstrate that, although the metabolic signature of IPSCs is not identical to that of hESCs, nonetheless they cluster with hESCs rather than with their somatic counterparts. ATP levels, lactate production and OCR revealed that human pluripotent cells rely mostly on glycolysis to meet their energy demands. Furthermore, our work points to some of the strategies which human pluripotent stem cells may use to maintain high glycolytic rates, such as high levels of hexokinase II and inactive pyruvate dehydrogenase (PDH). © 2011 Varum et al
Bifocal Spinal Cord Injury without Radiographic Abnormalities in a 5-Year Old Boy: A Case Report
We present the extremely unusual case of a 5-year-old boy with a bifocal (cervical as well as lumbar) spinal cord injury without radiographic abnormalities (SCIWORAs). The MRI showed cord oedema at the level of C2 and T10. We propose that during the motor vehicle crash severe propulsion of the head with a flexed lumbar region resulted in a traction injury to the lower thoracic and lumbar spine and maximum flexion caused SCIWORA in C2
Staffing needs for quality perinatal care in Tanzania
In Tanzania maternal and perinatal mortalities and morbidities are problems of public health importance, and have been linked to the shortage of skilled staff. We quantified the available workforceand the required nursing staff for perinatal care in 16 health institutions in Dar es Salaam. WHO safe motherhood needs assessment instruments were used to assess the availability of human resources,WHO designed Workload Indicators for Staffing Need (WISN) and Tanzanian standard activities and components of the workload for labour ward nursing were used to calculate nurse staffing requirementsand WISN ratios. There was a severe shortage of essential categories of health staff for perinatal care in all institutions. The ranges of WISN ratios for nursing staff working in the municipal hospitals’ labourwards were; nurse officers 0.5 – 1, trained nurses/midwives 0.2 - 0.4 and nurse assistants 0.1. These findings reflect extremely huge perinatal care workload pressure and suggest the urgent need for morestaff in order to achieve the global millennium development goals set for maternal and infant survival (Afr J Reprod Health 2008; 12[3]:113-124)
Simple and Nearly Optimal Polynomial Root-finding by Means of Root Radii Approximation
We propose a new simple but nearly optimal algorithm for the approximation of
all sufficiently well isolated complex roots and root clusters of a univariate
polynomial. Quite typically the known root-finders at first compute some crude
but reasonably good approximations to well-conditioned roots (that is, those
isolated from the other roots) and then refine the approximations very fast, by
using Boolean time which is nearly optimal, up to a polylogarithmic factor. By
combining and extending some old root-finding techniques, the geometry of the
complex plane, and randomized parametrization, we accelerate the initial stage
of obtaining crude to all well-conditioned simple and multiple roots as well as
isolated root clusters. Our algorithm performs this stage at a Boolean cost
dominated by the nearly optimal cost of subsequent refinement of these
approximations, which we can perform concurrently, with minimum processor
communication and synchronization. Our techniques are quite simple and
elementary; their power and application range may increase in their combination
with the known efficient root-finding methods.Comment: 12 pages, 1 figur
SoLid : Search for Oscillations with Lithium-6 Detector at the SCK-CEN BR2 reactor
Sterile neutrinos have been considered as a possible explanation for the recent reactor and Gallium anomalies arising from reanalysis of reactor flux and calibration data of previous neutrino experiments. A way to test this hypothesis is to look for distortions of the anti-neutrino energy caused by oscillation from active to sterile neutrino at close stand-off (similar to 6-8m) of a compact reactor core. Due to the low rate of anti-neutrino interactions the main challenge in such measurement is to control the high level of gamma rays and neutron background.
The SoLid experiment is a proposal to search for active-to-sterile anti-neutrino oscillation at very short baseline of the SCK center dot CEN BR2 research reactor.
This experiment uses a novel approach to detect anti-neutrino with a highly segmented detector based on Lithium-6. With the combination of high granularity, high neutron-gamma discrimination using 6LiF:ZnS(Ag) and precise localization of the Inverse Beta Decay products, a better experimental sensitivity can be achieved compared to other state-of-the-art technology. This compact system requires minimum passive shielding allowing for very close stand off to the reactor. The experimental set up of the SoLid experiment and the BR2 reactor will be presented. The new principle of neutrino detection and the detector design with expected performance will be described. The expected sensitivity to new oscillations of the SoLid detector as well as the first measurements made with the 8 kg prototype detector deployed at the BR2 reactor in 2013-2014 will be reported
Investigation on the influence of pre-treatments on drying behaviour of broccoli by MRI experiments
Abstract: Magnetic Resonance Imaging (MRI) allows the monitoring of internal moisture content of food products during drying non-destructively. In an experimental set-up with continuous and controlled hot air supply, the internal moisture distribution of broccoli with different pre-treatments are measured during drying. Moisture distribution, drying rate and shrinkage are compared and analyzed quantitatively. MRI results indicated that for fresh broccoli stalks the moisture content in the core of the sample increased after some hours of drying. With pre-treatments as peeling, blanching or freezing the moisture transport barrier in the skin of the broccoli sample was reduced. Shrinkage was uniform for most of the pre-treated samples and the moisture increment in the core did not occur. It was also found that with these pre-treatments progress of drying enhanced significantly. Therefore, from an drying efficiency and economic point of view, pre-treatments prior to drying offer important opportunities. Keywords: MRI, hot air drying, broccoli stalk, increased moisture content, pre-treatment
Spatial heterogeneity and peptide availability determine CTL killing efficiency in vivo
The rate at which a cytotoxic T lymphocyte (CTL) can survey for infected cells is a key ingredient of models of vertebrate immune responses to intracellular pathogens. Estimates have been obtained using in vivo cytotoxicity assays in which peptide-pulsed splenocytes are killed by CTL in the spleens of immunised mice. However the spleen is a heterogeneous environment and splenocytes comprise multiple cell types. Are some cell types intrinsically more susceptible to lysis than others? Quantitatively, what impacts are made by the spatial distribution of targets and effectors, and the level of peptide-MHC on the target cell surface? To address these questions we revisited the splenocyte killing assay, using CTL specific for an epitope of influenza virus. We found that at the cell population level T cell targets were killed more rapidly than B cells. Using modeling, quantitative imaging and in vitro killing assays we conclude that this difference in vivo likely reflects different migratory patterns of targets within the spleen and a heterogeneous distribution of CTL, with no detectable difference in the intrinsic susceptibilities of the two populations to lysis. Modeling of the stages involved in the detection and killing of peptide-pulsed targets in vitro revealed that peptide dose influenced the ability of CTL to form conjugates with targets but had no detectable effect on the probability that conjugation resulted in lysis, and that T cell targets took longer to lyse than B cells. We also infer that incomplete killing in vivo of cells pulsed with low doses of peptide may be due to a combination of heterogeneity in peptide uptake and the dissociation, but not internalisation, of peptide-MHC complexes. Our analyses demonstrate how population-averaged parameters in models of immune responses can be dissected to account for both spatial and cellular heterogeneity
- …