3,093 research outputs found

    Intensity correlations, entanglement properties and ghost imaging in multimode thermal-seeded parametric downconversion: Theory

    Get PDF
    We address parametric-downconversion seeded by multimode pseudo-thermal fields. We show that this process may be used to generate multimode pairwise correlated states with entanglement properties that can be tuned by controlling the seed intensities. Multimode pseudo-thermal fields seeded parametric-downconversion represents a novel source of correlated states, which allows one to explore the classical-quantum transition in pairwise correlations and to realize ghost imaging and ghost diffraction in regimes not yet explored by experiments.Comment: 9 pages, 3 figure

    Experimental reconstruction of photon statistics without photon counting

    Full text link
    Experimental reconstructions of photon number distributions of both continuous-wave and pulsed light beams are reported. Our scheme is based on on/off avalanche photodetection assisted by maximum-likelihood estimation and does not involve photon counting. Reconstructions of the distribution for both semiclassical and quantum states of light are reported for single-mode as well as for multimode beams.Comment: Revised version: in press on PRL. 4 pages, 4 fig

    Conditional measurements on multimode pairwise entangled states from spontaneous parametric downconversion

    Get PDF
    We address the intrinsic multimode nature of the quantum state of light obtained by pulsed spontaneous parametric downconversion and develop a theoretical model based only on experimentally accessible quantities. We exploit the pairwise entanglement as a resource for conditional multimode measurements and derive closed formulas for the detection probability and the density matrix of the conditional states. We present a set of experiments performed to validate our model in different conditions that are in excellent agreement with experimental data. Finally, we evaluate nonGaussianity of the conditional states obtained from our source with the aim of discussing the effects of the different experimental parameters on the efficacy of this type of conditional state preparation

    The quantum-classical transition in thermally seeded parametric downconversion

    Get PDF
    We address the pair of conjugated field modes obtained from parametric-downconversion as a convenient system to analyze the quantum-classical transition in the continuous variable regime. We explicitly evaluate intensity correlations, negativity and entanglement for the system in a thermal state and show that a hierarchy of nonclassicality thresholds naturally emerges in terms of thermal and downconversion photon number. We show that the transition from quantum to classical regime may be tuned by controlling the intensities of the seeds and detected by intensity measurements. Besides, we show that the thresholds are not affected by losses, which only modify the amount of nonclassicality. The multimode case is also analyzed in some detail.Comment: 12 pages, 3 figure

    Robot adoption and FDI driven transformation in the automotive industry

    Get PDF
    This paper explores the relationship between inward foreign direct investments and the adoption of industrial robots, across different segments of the automotive value chain. Using the International Federation of Robotics and FDI Market datasets at a fine level of disaggregation of the automotive sector, we investigate the extent to which FDIs are related to the operational stock of industrial robots in 34 countries over the period 2005-2014. We find distinct patterns linking FDIs and robot adoption for different groups of countries and for different segments of the automotive value chain, that, is assembling and components production. With some relevant exceptions, FDIs are found to be highly correlated with robot adoption in the assembling segment across major leading countries. However, this correlation becomes weak for components production. To explain this differential role of FDIs in robot adoption, we formulate hypotheses around the country-specific drivers of robotisation for the components segment by pointing to the role of domestic ecosystems of suppliers and industrial policy as drivers of technology absorption and diffusion

    Reliable source of conditional non-Gaussian states from single-mode thermal fields

    Full text link
    We address both theoretically and experimentally the generation of pulsed non-Gaussian states from classical Gaussian ones by means of conditional measurements. The setup relies on a beam splitter and a pair of linear photodetectors able to resolve up to tens of photons in the two outputs. We show the reliability of the setup and the good agreement with the theory for a single-mode thermal field entering the beam splitter and present a thorough characterization of the photon statistics of the conditional states.Comment: 18 pages, 12 figure

    The quantum-classical transition in thermally seeded parametric downconversion

    Get PDF
    We address the pair of conjugated field modes obtained from parametric-downconversion as a convenient system to analyze the quantum-classical transition in the continuous variable regime. We explicitly evaluate intensity correlations, negativity and entanglement for the system in a thermal state and show that a hierarchy of nonclassicality thresholds naturally emerges in terms of thermal and downconversion photon number. We show that the transition from quantum to classical regime may be tuned by controlling the intensities of the seeds and detected by intensity measurements. Besides, we show that the thresholds are not affected by losses, which only modify the amount of nonclassicality. The multimode case is also analyzed in some detail.Comment: 12 pages, 3 figure

    State reconstruction by on/off measurements

    Get PDF
    We demonstrate a state reconstruction technique which provides either the Wigner function or the density matrix of a field mode and requires only avalanche photodetectors, without any phase or amplitude discrimination power. It represents an alternative, of simpler implementation, to quantum homodyne tomography.Comment: 6 pages, 4 figures, revised and enlarged versio

    Ab initio Molecular Dynamics in Adaptive Coordinates

    Full text link
    We present a new formulation of ab initio molecular dynamics which exploits the efficiency of plane waves in adaptive curvilinear coordinates, and thus provides an accurate treatment of first-row elements. The method is used to perform a molecular dynamics simulation of the CO_2 molecule, and allows to reproduce detailed features of its vibrational spectrum such as the splitting of the Raman sigma+_g mode caused by Fermi resonance. This new approach opens the way to highly accurate ab initio simulations of organic compounds.Comment: 11 pages, 3 PostScript figure

    Sub-shot-noise photon-number correlation in mesoscopic twin-beam of light

    Get PDF
    We demonstrate sub-shot-noise photon-number correlations in a (temporal) multimode mesoscopic (∼103\sim 10^3 detected photons) twin-beam produced by ps-pulsed spontaneous non-degenerate parametric downconversion. We have separately detected the signal and idler distributions of photons collected in twin coherence areas and found that the variance of the photon-count difference goes below the shot-noise limit by 3.25 dB. The number of temporal modes contained in the twin-beam, as well as the size of the twin coherence areas, depends on the pump intensity. Our scheme is based on spontaneous downconversion and thus does not suffer from limitations due to the finite gain of the parametric process. Twin-beams are also used to demonstrate the conditional preparation of a nonclassical (sub-Poissonian) state.Comment: 5 pages, 5 (low-res) figures, to appear on PR
    • …
    corecore