39,606 research outputs found

    Deuterium variations related to snow pit stratigraphy in the Thiel Mountains, Antarctica

    Get PDF

    Three loop HTL perturbation theory at finite temperature and chemical potential

    Full text link
    In this proceedings contribution we present a recent three-loop hard-thermal-loop perturbation theory (HTLpt) calculation of the thermodynamic potential for a finite temperature and chemical potential system of quarks and gluons. We compare the resulting pressure, trace anomaly, and diagonal/off-diagonal quark susceptibilities with lattice data. We show that there is good agreement between the three-loop HTLpt analytic result and available lattice data.Comment: 4 pages, 4 figure

    Magnetic and superfluid phases of confined fermions in two-dimensional optical lattices

    Full text link
    We examine antiferromagnetic and d-wave superfluid phases of cold fermionic atoms with repulsive interactions in a two-dimensional optical lattice combined with a harmonic trapping potential. For experimentally realistic parameters, the trapping potential leads to the coexistence of magnetic and superfluid ordered phases with the normal phase. We study the intriguing shell structures arising from the competition between the magnetic and superfluid order as a function of the filling fraction. In certain cases antiferromagnetism induce superfluidity by charge redistributions. We furthermore demonstrate how these shell structures can be detected as distinct anti-bunching dips and pairing peaks in the density-density correlation function probed in expansion experiments.Comment: 4 pages, 3 figure

    Time Series Analysis Package /TSAP/ for terminal use

    Get PDF
    User manual in form of interactive, functionally dependent time series programs accessible in any order from remote termina

    Stochastic volatility

    Get PDF
    Given the importance of return volatility on a number of practical financial management decisions, the efforts to provide good real- time estimates and forecasts of current and future volatility have been extensive. The main framework used in this context involves stochastic volatility models. In a broad sense, this model class includes GARCH, but we focus on a narrower set of specifications in which volatility follows its own random process, as is common in models originating within financial economics. The distinguishing feature of these specifications is that volatility, being inherently unobservable and subject to independent random shocks, is not measurable with respect to observable information. In what follows, we refer to these models as genuine stochastic volatility models. Much modern asset pricing theory is built on continuous- time models. The natural concept of volatility within this setting is that of genuine stochastic volatility. For example, stochastic-volatility (jump-) diffusions have provided a useful tool for a wide range of applications, including the pricing of options and other derivatives, the modeling of the term structure of risk-free interest rates, and the pricing of foreign currencies and defaultable bonds. The increased use of intraday transaction data for construction of so-called realized volatility measures provides additional impetus for considering genuine stochastic volatility models. As we demonstrate below, the realized volatility approach is closely associated with the continuous-time stochastic volatility framework of financial economics. There are some unique challenges in dealing with genuine stochastic volatility models. For example, volatility is truly latent and this feature complicates estimation and inference. Further, the presence of an additional state variable - volatility - renders the model less tractable from an analytic perspective. We examine how such challenges have been addressed through development of new estimation methods and imposition of model restrictions allowing for closed-form solutions while remaining consistent with the dominant empirical features of the data.Stochastic analysis

    Construction and Interpretation of Model-Free Implied Volatility

    Get PDF
    The notion of model-free implied volatility (MFIV), constituting the basis for the highly publicized VIX volatility index, can be hard to measure with accuracy due to the lack of precise prices for options with strikes in the tails of the return distribution. This is reflected in practice as the VIX index is computed through a tail-truncation which renders it more compatible with the related concept of corridor implied volatility (CIV). We provide a comprehensive derivation of the CIV measure and relate it to MFIV under general assumptions. In addition, we price the various volatility contracts, and hence estimate the corresponding volatility measures, under the standard Black-Scholes model. Finally, we undertake the first empirical exploration of the CIV measures in the literature. Our results indicate that the measure can help us refine and systematize the information embedded in the derivatives markets. As such, the CIV measure may serve as a tool to facilitate empirical analysis of both volatility forecasting and volatility risk pricing across distinct future states of the world for diverse asset categories and time horizons.

    Do Bonds Span Volatility Risk in the U.S. Treasury Market? A Specification test for Affine Term Structure Models

    Get PDF
    We investigate whether bonds span the volatility risk in the U.S. Treasury market, as predicted by most 'affine' term structure models. To this end, we construct powerful and model-free empirical measures of the quadratic yield variation for a cross-section of fixed-maturity zero-coupon bonds ("realized yield volatility") through the use of high-frequency data. We find that the yield curve fails to span yield volatility, as the systematic volatility factors are largely unrelated to the cross-section of yields. We conclude that a broad class of affine diffusive, Gaussian-quadratic and affine jump-diffusive models is incapable of accommodating the observed yield volatility dynamics. An important implication is that the bond markets per se are incomplete and yield volatility risk cannot be hedged by taking positions solely in the Treasury bond market. We also advocate using the empirical realized yield volatility measures more broadly as a basis for specification testing and (parametric) model selection within the term structure literature.

    Heterogeneous Information Arrivals and Return Volatility Dynamics: Uncovering the Long-Run in High Frequency Returns

    Get PDF
    Recent empirical evidence suggests that the long-run dependence in financial market volatility is best characterized by a slowly mean-reverting fractionally integrated process. At the same time, much shorter-lived volatility dependencies are typically observed with high-frequency intradaily returns. This paper draws on the information arrival, or mixture-of-distributions hypothesis interpretation of the latent volatility process in rationalizing this behavior. By interpreting the overall volatility as the manifestation of numerous heterogeneous information arrivals, sudden bursts of volatility typically will have both short-run and long-run components. Over intradaily frequencies, the short-run decay stands out most clearly, while the impact of the highly persistent processes will be dominant over longer horizons. These ideas are confirmed by our empirical analysis of a one-year time series of intradaily five-minute Deutschemark - U.S. Dollar returns. Whereas traditional time series based measures for the temporal dependencies in the absolute returns give rise to very conflicting results across different intradaily sampling frequencies, the corresponding semiparametric estimates for the order of fractional integration remain remarkably stable. Similarly, the autocorrelogram for the low-pass filtered absolute returns, obtained by annihilating periods in excess of one day, exhibit a striking hyperbolic rate of decay.
    corecore