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Abstract Basic bioeconomic models which incorporate
uncertainty are reviewed to show and compare the principal
methods used and results reported in the literature. Beginning
with a simple linear control model of stock uncertainty, we
proceed to discuss more complex models which explicitly rec-
ognize risk preferences, firm and industry behavior, and mar-
ket price effects. The effects of uncertainty on the results of
bioeconomic analysis are rarely unambiguous, and in some in-
stances differ little from corresponding deterministic results.
This review is presented to enhance readers' appreciation of
the papers to follow in this and the next issue of the journal.

1. Introduction

As with most scientific endeavors, the study of fisheries is
shaped by the intellectual currents of the times. One such current
in recent years has been the concern with behavior under un-
certainty. After Bernoulli's (1738) paper formulating the ex-
pected utility hypothesis, the study of uncertainty languished for
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two centuries before being rekindled by von Neuman and Mor-
genstern (1944). Their work provided the foundation for an in-
tellectual revolution that has brought operational analyses of
uncertainty to several practical endeavors in commerce, gov-
ernment, and law (Hirshleifer and Riley 1979).

The study of fisheries economics, or, more specifically, of
bioeconomics, has not escaped this intellectual revolution. Bi-
ologists, mathematicians, and economists began developing in
the 1970s the foundations for analyzing the behavior of bio-
economic systems under uncertainty. The literature in this area
has grown dramatically during the last few years. Of the nearly
three-score papers we examined for this review, only seven were
published before 1975. Uncertainty now is clearly established in
the bioeconomics literature as a principal field of inquiry.

A comprehensive review of all important aspects of bioeco-
nomics and uncertainty is impossible in this limited space. Our
modest aim here is to review the basics of bioeconomic analysis
under uncertainty, especially to report and compare principal
methods and results found in the literature. Where possible, we
identify gaps and inconsistencies where further investigation ap-
pears fruitful.

Our review begins in section 2 with one of the simplest models
of bioeconomics under uncertainty, distinguished by being linear
in the control variable. In section 3 we review models which are
nonlinear in the control variable, including two which take risk
preferences into account. Formal analyses of firm and industry
behavior under uncertainty are reviewed in section 4. Section 5
contains brief reviews of assorted analyses. We sum up our re-
view in section 6.

2. Linear Control Models

The first model we examine is a direct extension of Clark's (1976)
familiar bioeconomic framework to include stock uncertainty.
First developed by Ludwig (1979), the model is in continuous
time and is linear in the control variable. Stock uncertainty is
incorporated by the stochastic differential equation

dx = [g{x,) - h,] dt + (TXi dz (1)



Stochastic Bioeconomics: Methods and Results 119

where x, is the size of the resource stock in period t, g{x,) is the
natural growth rate of x,, h, is the harvest rate, ax, reflects the
level of random fluctuation in x,, and dz is an increment of a
stochastic process.' This specification assumes that the size of
the resource stock in the current period is known without error
and that the change in stock size is composed of a deterministic
part, [g{x,) - h,]dt, and a random part, ux, dz. The expected
rate of change in the stock size is [g{xt) - h,].

The net revenue from harvesting the resource in each period
is given by [p - c{x,)]h,, where p is the unit price of harvest,
assumed constant, and c{x,) is the unit cost of harvest, c'{x,) <
0. The harvest rate is constrained by upper and lower bounds,
that is, hiix,) < h,< h^ix,).^ The expected present value of net
revenue from harvest is given by

- c{x,)]h, dt (2)

where € is the expectation operator, and 8 is the discount rate.
Optimal harvest policy is found by maximizing equation 2 subject
to equation 1 and hi{x,) < h -^ hu{x,).

The basic necessary condition for this stochastic optimal con-
trol problem (see Kamien and Schwartz 1981) is

max {e-^'[p - c{x)]h + VAgix) - /z] -H ^ ; - V . . (3)

where V{xo) is the maximum of equation 2 at r = 0 and, therefore,
Vx - dV/dx is the marginal expected present value of (or shadow
price on) the resource stock.

From equation 3 it follows that the optimal feedback policy
at f = 0 is given by

h* =
hu(xo), if [p - cixo)] > V
h, if [p - c{xo)] = V
hi{xo), if [p - cixo)] < V
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The feedback policy specifies the optimal harvest rate as de-
, pendent on the current state, that is, hf = h(x,).^ The optimal

policy for the stochastic linear control model has the same bang-
bang feature as its deterministic counterpart. In both stochastic

I and deterministic models, optimal policy attempts to attain a
J steady state at the equilibrium stock size JC* where p - c(jc*) =

V^(x*). For the stochastic case, we denote this stock size by
xf, and for the deterministic case by jc^. In each case, harvest
policy switches at the respective x*. When jc, > jc*, h, is set at
its upper bound, and when JC, < jc*, /i, is set at its lower bound.
When X, = x*, h, is set equal to the natural growth rate, that is

; h = g(x*).'
Ludwig (1979) shows that jc* > jc3 under certain conditions.'

Ludwig and Varah (1979) use numerical methods to show that
increased noise (here, a larger a) causes xf/x^ to increase for
large values of /i«. At low values of /i,, and the discount rate,

^ increased noise causes xf/x^ to decrease with JC? < x^ in some
I situations.^ Thus the effect of stock uncertainty in this simple
model is ambiguous.

Reed (1979) removes some of this ambiguity using a discrete-
time, stock-recruitment model. He shows how the form of the
harvest cost function c(jc) affects the level of JC* relative to jc^.
The stochastic difference equation used is

^/+i = z,f(x, - h,) (4)

; where f(-) is the expected stock-recruitment function, and {z,} is
a sequence of independent, identically distributed (iid) random
variables with unit mean. Optimal policy is obtained by maxi-
mizing expected present value of net revenue.

subject to equation 4 and 0 < /z, < jc,, where a is the discount
factor. Note that the constraint on the harvest rate is not as
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general as Ludwig's, but it is this constraint that results in a
constant escapement policy. That is,

,* _ | 0 , if
'' \x, - xf, if

X, < xf
X, > xf

where xf is the optimal escapement level and is approximately
equivalent to Ludwig's continuous time xf.

Reed shows that xf ^ x* when xcix) is strictly concave or
linear and that xf < x^ when xcix) is strictly convex. He also
asserts it can be shown that xf increases with an increase in
uncertainty (i.e., the spread of the Zt) when cix) = k/x", k > 0
and 0 < e < 1.'

The models discussed to this point allow no price effects and
implicitly assume risk-neutral preferences and costless changes
in the level of harvesting effort. Models which allow for risk-
averse preferences and price effects are discussed in the next
two sections. As reported by Ludwig (1980), costly changes in
effort eliminate the bang-bang policy feature of the linear model.
Using a numerical example, he demonstrates that the model with
costly changes in effort yields a present value of net revenue
that lies between the present values for the feedback and open-
loop (constant effort) policies of the linear model.^

The structure of harvesting costs significantly affects the char-
acter of optimal policy. In an earlier paper. Reed (1974) develops
a model which is similar to the one above but in which total costs
also involve a fixed setup cost K incurred only if harvest is un-
dertaken in the period. That is, total costs are given by

Tdh,, X,) = h,cix,) + yih,)-K

where

, if h,>0

Under certain curvature properties of the growth function and
the cost function, an (5, s) policy is shown to maximize the



122 Peder Andersen and Jon G. Sutinen

present value of net revenue. That is, optimal harvest policy is
given by

f , if x , < s
t - S, if JC, > 5

where S<s. With no setup cost (A: = 0), 5 = i = jc?, as above.
The intuition behind this result is straightforward. When K =

0, it is optimal to harvest JC, down to 5 whenever jc, > 5. However,
with positive setup costs, small harvests would not cover the
setup costs and should not be undertaken. A harvest should be
undertaken only if it is large enough to cover all costs. The level
s is the smallest stock size at which positive net revenue is re-
alized.

Spulber (1982) extends Reed's setup cost model in two ways.
The first involves allowing the random disturbances in resource
growth {z,} to follow a general Markov process. When ^ > 0,
optimal harvest policy is now given by

;,* = fO, if JC, < s{z)
\x, - S{z), if X, > s{z)

where z is the last observed disturbance. Therefore, the two crit-
ical stock sizes (5, s) are not constant. Instead, expected future
disturbances are taken into account which, in the Markovian
framework, depend on previously observed disturbances.
Spulber also shows that when A: = 0, Siz) = siz) and when the
{z,} are iid, 5 and s are constants as in Reed (1974, 1979).

Spulber's second extension is to show that the resource stock
and harvest rate converge to unique, time-invariant probability
distributions. He observes that the time-invariant probability dis-
tributions on harvest and stock size constitute the stochastic
analogue to the steady-state equilibrium found in deterministic
models. Spulber explicitly derives these probability distributions
for the case K = 0 using the logistic model. Since his harvest
cost function, c-h, (c = constant), is independent of JC,, the ex-
pected stock size and harvest rate he computes for the stochastic
steady state are equal to their deterministic equilibrium values.
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Taken together, the analyses of Reed and Spulber show that
the structure of harvest costs is a principal determinant of the
expected difference between stochastic and deterministic out-
comes. The lack of an expected difference does not mean that
optimal stochastic policy is the same as optimal deterministic
policy. Indeed, they can be quite different in any given period.
Deterministic harvest policy is constant in equilibrium, while
stochastic harvest policy (of the feedback type) varies with the
state of the stock.

3. Nonlinear Control Models

We now consider a more complex set of models, distinguished
principally by being nonlinear in the control variable. Curvature
properties of the criterion function are especially important for
problems involving uncertainty, so one might argue that the fol-
lowing models are somewhat more appropriate.

The first nonlinear model we consider was developed by Gleit
(1978), who maximizes expected utility in order to account for
risk preferences. The Ludwig model above is therefore modified
to be

max e
h

I f e-^' U[ph - cix)h] dt\

subject to equation 1, where t/() is the utility function, U' > 0,
U" < 0.̂  The basic necessary condition analogous to equation
3 is

max L-^' U[ph - cix)h] + JAgix) - h] +

where 7^ and J^x are analogous to V^ and V^x in equation 3.
Therefore, the optimal harvest rate hf is where

About all we can say about optimal policy in this model is that
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it is not bang-bang."' It can also be shown that for certain con-
ditions, hf and x, are directly related." A direct relationship also
exists in the linear model, but it is discontinuous. Here there is
a smooth, direct relationship. To this point, it is not possible to
establish any qualitative difference between stochastic and de-
terministic policies in the nonlinear control case.

The work of Lewis (1981, 1982) is an elaboration ofthe above
nonlinear model. The stochastic growth relationship used by
Lewis is given by

X,+ \ = X, + T],,g(x,) - T^JME,, X,)

where

g{-) = expected rate of change in the stock x resulting from
natural growth,

h{E,x) = production function,
T) 1 = random variation in growth caused by changes in re-

cruitment, growth, and natural mortality, and
Ti2 = random variation in harvest caused by changes in en-

vironmental conditions, stock distribution, catchabil-
ity, etc.

Both Til and TI2 are nonnegative random variables, independently
distributed through time.

For his calculations, Lewis uses the logistic growth law for
g{x) and a Cobb-Douglass production function h{E,x) = qEx,
linear in E and x. Net returns are given by R{E,, x,) = p,h,r\2,
- C{E,), where p, = the exvessei price, a nonnegative random
variable, and C{E,) = the total cost of effort. Lewis considers
three specifications for CiE):

CiE)
CiE)
CiE)

= 0

^ C'xL

i + c2£'^ c , , (

C3 > 0

:2 > 0

(5a)
(5b)
(5c)

He imagines a social manager who has a utility function
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U[R{x,, £•,)] where U' > 0, U" < 0. For a risk-neutral social
manager, Lewis lets U{R) = R, and for the risk-averse social
manager, U{R) - \n(R + G), where G is a large enough constant
to insure R -\- G > 0 always. The social manager is assumed to

max 2 oi'e{U[R{x,, E,)]}
t = 0

subject to x,+1 = x, -I- T)i, g{x,) - Ti2r ht, where a is the riskless
discount factor.

Using Howard's stochastic dynamic programming algorithm,
numerical solutions are generated for this model with parameter
estimates from the Eastern Pacific yellowfin tuna fishery. Lew-
is's results are especially interesting because they describe be-
havior along the optimal trajectory to the steady state as well as
at the steady state. We summarize Lewis's results as follows:

Effects of Risk-Bearing Attitudes. Optimal effort and harvest
levels for the risk-averse manager are greater (less) than the op-
timal levels for the risk-neutral manager at small (large) stock
sizes. Both manager's programs converge to the same steady-
state stock size, but the risk-averse program converges at a
slower rate.

Effects of Increased Uncertainty. For the risk-neutral manager,
increased variation in price has no effect as long as expected
price remains the same, but increased variation in the harvest
rate parameter iri2 decreases optimal effort corresponding to each
stock size. For the risk-averse manager, increased variation in
price or in 712 leads to increases or no change in optimal effort
at small stock sizes and to decreases in effort at large stock sizes.
Increased variation in the growth rate parameter T\i alone has
only a negligible effect on optimal effort levels, a surprising result
in light of Ludwig's and R6ed's analyses.

Stochastic Versus Deterministic Analysis. The difference (in
present value terms) between the stochastic and deterministic
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results was negligible for the more conventional cost function
(equation 5b) and small for the other two cost functions (5a and
5c). Therefore, in some cases solutions to deterministic problems
yield good approximations for solutions to stochastic problems.

For his study of lobster. Smith (1980) also finds that stochastic
growth is not significant. He uses a production function of the
form h, = qEf x,, where E, is fishing effort and 0 < p < 1. Like
Spulber, Smith derives the time-invariant probability distribu-
tion for the resource stock for a growth process similar to equa-
tion L For a constant (i.e., open-loop) effort policy. Smith shows
that the average, stochastic steady-state stock size is given by

2(p/A:)

where Xj is the deterministic steady-state stock size, p is the
intrinsic growth rate, and k is the carrying capacity for the logistic
growth law. For the lobster fishery he studied, there was no
significant difference between e{jc} and x^.

Mendelssohn (1982) also examines the effects of risk prefer-
ences on optimal harvest policy. In a stochastic stock recruit-
ment model which maximizes expected discounted utility of har-
vest, Mendelssohn's numerical analysis shows that risk aversion
results in more harvested at small stock sizes than with a risk-
neutral utility function. This same result is reported by Lewis.
Mendelssohn and Lewis also conclude that adjusting the dis-
count rate is not a satisfactory means of accounting for different
attitudes toward risk.

4. Firm and Industry Analysis

In contrast to the models reviewed above, Andersen (1982) ex-
plicitly models individual firms and examines both open-access
and optimal fisheries exploitation under price uncertainty. In-
dividual firms have profits given by

TT' = pM - c{E',)

where p, is random with mean p, h\ = qE\x,, c{E\) represents
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total costs, and c'{E') > 0. Each firm maximizes the expected
utility of profits e{(/(iT')}, where (/'(TT') > 0 and C/"(IT') < 0.
Since firms are risk-averse, they operate where the expected
marginal value product of effort exceeds the marginal factor cost
of effort. That is, their effort level is determined by the condition

pqx = c'{E') + 7

where 7 = y{ul) > 0 is the marginal cost of risk bearing. If the
variance of price ul is zero, 7(0) = 0, firms are facing a deter-
ministic price and apply more effort. And since "y'Cffp) > 0, in-
creases in price variation induce less effort to be applied. He
also assumes that firms enter and exit the fishery as

pqx § m -f 7(CT^)

where m is the minimum average cost of effort.
The growth of the fish resource stock is governed by

N

X = g{x) - X h'

where Â  is the number of firms fishing. The logistic growth model
is assumed for g{x).

Andersen proceeds to show that in an open-access equilib-
rium, total effort and the number of fishing firms are less and
the stock size greater with price uncertainty than without (where
the deterministic price equals p). Also, increases in the variance
of price reduce total effort and the number of firms and increase
the stock size.

For his first-best optimum, Andersen assumes that society (in
the form of a managing authority) is willing to bear risk at zero
cost. That is, society is risk-neutral, attaching importance to risk
only through the costs of risk borne by individuals. It is also
assumed that the managing authority is able to vary the price
variance (at the exvessel level) without cost and faces the same
expected price, p. Under these conditions, it is shown that the
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first-best optimum may have more total effort applied than would
result under open access if the price variance is high. Further-
more, the only regulation method that produces the first-best
optimum is proved to be a fixed price system. The second-best
regulation method is a tax on revenue, which is shown to be
superior to both transferable quotas and a tax on catch.

In Andersen (1981b), fishing firms' behavior and character-
istics of the open-access and optimal fishery under stock un-
certainty are examined. He makes the same economic assump-
tions as above, except price is now constant. The growth of the
resource stock (with exploitation) is given by the stochastic dif-
ferential equation

; dx,= \ g{x,) - 2 h', 1 dt + ajc, dz,
, L I = 1 J

I
I where z, is assumed to describe a white-noise stochastic process
I (i.e., dz ~ N[0, a]). As before, the logistic form of ^(x) is used.
This stochastic growth relationship is almost identical to equa-
tion 1 discussed above. Andersen shows that if the stock size is
known by fishing firms at fishing time, the optimal levels of catch
and effort are less than in the deterministic case. If the stock
size is not known by firms at fishing time, the optimal levels of
effort and catch are less than if the stock size is known at fishing
time.

Comparing open access and optimum fisheries, he shows that
if the stock level is known at fishing time, the optimal effort level
is less than the expected effort level under open access—al-
though, in some periods, optimal effort may be larger than under
open access. If firms know only the mean and variance of the
stock, effort is always larger under open access than in the op-
timally managed fishery.
I Pindyck (1984) represents the only stochastic bioeconomic
analysis which explicitly incorporates a downward-sloping de-
mand function. Pindyck treats the case where resource markets
are competitive, property rights to the resource stock are well
defined and enforced, and firms are risk-neutral. The source of
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uncertainty is the stochastic growth ofthe resource stock, given
by equation 1 where (T(JC), a'ix) > 0, replaces CTJC. Equilibrium
harvest (and, under these conditions, optimal harvest) is ob-
tained by

max Pir) dr - cix)h + VAgix) - h] + - ^ V.,
h Jo 2

where pih) is the inverse market demand curve. Among several
interesting results is that for a convex cix), stock uncertainty
increases the expected rate of growth in price. This does not
imply, however, that the harvest rate is greater than in the de-
terministic case, as Pindyck demonstrates with some examples.
Harvest rates, for any x, can be increased, decreased, or un-
changed by changes in a(jc).

5. Additional Issues

Several issues beyond those covered in previous sections are
treated in the literature. A selected few follow.

Reed (1974) and Andersen (1981a) address the issue of ex-
tinction under uncertainty. For the case K > 0, Reed derives
two interest rate values /i and /2 ('l > '2). If the actual interest
rate / > / j , extinction is optimal; if / < /2, survival is optimal.
It is not clear what happens when /i > / > /2. For the case K
- 0 and a constant marginal harvest cost (i.e., c[x] - c), ex-
tinction is optimal if the expected population growth rate is al-
ways less than the rate of interest. Andersen examines the im-
plications price uncertainty has for extinction. The same
assumptions are made as in his papers cited above. His principal
result is that the deterministic results regarding extinction (e.g.,
see Clark 1973; Clark and Munro 1975) cannot be carried over
to the case of price uncertainty. With price uncertainty, the con-
ditions for extinction can be less restrictive in an optimal fishery
than in an open-access fishery. That is, if extinction is optimal
(in a first-best sense), it will not necessarily occur under open
access. This is impossible in the deterministic case. Also, the
conditions under which extinction is optimal depend on the



Peder Andersen and Jon G. Sutinen

method of regulation. For a tax on revenue, the conditions are
less restrictive than with a tax on catch or individual quotas.

High variation in equilibrium (or steady-state) harvests has
been established by a number of studies (e.g., Beddington and
May 1977; Sissenwine 1977; and May et al. 1978), especially
when harvested at high effort levels. Since the manager's utility
function usually is not known, it is not clear how much variation
in harvest should be permitted. Mendelssohn (1980a) approaches
this problem by devising a numerical method which computes
the trade-off between the mean and variance of the return. He
applied this technique to the Bristol Bay, Alaska, salmon fishery
to generate a trade-off schedule for the mean and standard de-
viation of long-run harvest.

So far in this review we have discussed results based on
lumped parameter models (e.g., the logistic growth law). Two
studies have examined optimal policy based on the cohort model.

Dudley and Waugh (1980) develop a numerical model for de-
I termining optimal harvest policies for a single-cohort fishery
I under uncertainty. Their application is to an Australian prawn
fishery. A Beverton-Holt growth law is assumed where recruit-
ment, natural mortality, and catchability are random variables.
Expected net revenue for each policy, state, and period, plus
the transition probabilities, were generated by simulation and
used as the data in a stochastic dynamic programming model.
The stochastic DP generated policies which maximize expected
net revenue over the season (12 months). They find that with a
high level of harvesting capacity, the optimal procedure is not
to harvest at all until the biomass reaches its peak, and then to
harvest at the maximum rate until the minimum profitable bio-
mass is reached. This policy has an (5, s) character, as in Reed
and Spulber. The stochastic and deterministic results differ by
little and in no apparent systematic way given the tabular results
presented. With a low level of harvesting capacity, optimal har-
vest begins a month earlier but is not applied at its maximum
until the peak biomass time arrives. The presence of uncertainty
results in more fishing effort in the first month and spreads it
out over more months (in most, but not all, cases). A demand
relationship instead of a constant price tends, as one would ex-
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pect, to spread effort and catch over more of the year. As with
most numerical results, one cannot confidently generalize Dud-
ley and Waugh's results. Their results also consider the three
random variables in only three combinations, and they do not
present results with different levels of variation in the random
parameters.

Mendelssohn (1978) develops single-species, multicohort op-
timal harvesting models in which recruitment and age-dependent
survivorship rates are random. His two models assume perfect
selection in harvesting the cohorts, or age classes. In the first
model where he assumes that recruitment is independent of total
stock size, Mendelssohn derives a "Fisher rule" for harvest.
That is, do not harvest a cohort until it reaches an optimum age,
then harvest the entire cohort. While there is no comparison with
the deterministic policy, it appears qualitatively similar to the
deterministic analysis of Clark, Edwards, and Friedlander
(1973). In his second model, recruitment is assumed to depend
on the total stock size and yields a poHcy that the oldest are
always harvested first. Using similar methods, Mendelssohn
(1980b) derives the qualitative properties of optimal policy for a
stochastic multispecies fishery.

6. Concluding Remarks

In this brief review we have described the basic methods and
results found in the stochastic bioeconomics literature. Where
the dynamics of the resource stock are given by a stochastic
differential or difference equation, stochastic dynamic program-
ming methods are used to derive optimal policy. In several cases,
optimal policy under stochastic conditions is qualitatively dif-
ferent from optimal policy under deterministic conditions. Such
differences, however, are not unambiguous. Two empirically
based studies, Lewis (1982) and Smith (1980), conclude that de-
terministic policies are reasonably good substitutes for stochas-
tic policies on average. One cannot easily generalize from these
results, but this does raise the question of whether uncertainty
is significant. Future studies hopefully will show more clearly
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the significance (or insignificance) of uncertainty for policy anal-
ysis and other studies of the fishery.

Acknowledgments

An earlier version of this paper was presented to the Workshop on
Uncertainty and Fisheries Economics, University of Rhode Island,
November 1981. Support for this research was provided by Sea Grant,
University of Rhode Island, and the Carlsberg Foundation, Denmark.
Contribution No. 2191 of the Rhode Island Agriculture Experiment
Station.

Notes

1. In addition, g{x) is strictly concave, CT > 0, and e{dz} = 0.
2. The control variable in Ludwig's model actually is effort E in the

production function h = qEx, and his constraint is f, < £ < £„. There-
fore, in the present specification, the constraint on harvest is where
hi{x,) = qEix, and hu{x,) = qE^x,.

3. A feedback, or closed-loop, policy prescribes a rule for specifying
future harvest rates when future information is given. Feedback pol-
icies are generally superior to open-loop and revised open-loop policies
(cf. Ludwig 1980). An open-loop policy is one for which all present
and future harvest rates are determined once and for all in the initial
period. This policy is often fully appropriate in a deterministic setting
where all future states are known with perfect certainty. Under a re-
vised open-loop policy, estimates of the state and parameters of the
system are periodically updated and lead to revisions in the open-loop
policy.

4. Ludwig also examines the consequences of noise for depensation
models with two or more switching points.

5. The conditions include a small CT^, a large /i«, and hi = 0.
6. Their model allows x^ to increase with CT^ also, since they use a

deterministic growth function which has CT^ as an argument. Their jus-
tification is that this specification gives better results when formulating
deterministic policy. Unfortunately, this choice seems to confound
their results somewhat.

7. A number of not unreasonable conditions must be satisfied for
these results to hold. Reed notes that a constant escapement policy is
not optimal if the demand curve is not perfectly elastic or if the total
cost function is not linear in h.
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8. Clark (1979) suggests extending Ludwig's model to allow /?„ to
be determined optimally, thereby also determining the optimal level of
excess capacity above h = g{xf) that should be constructed to take
advantage of stock sizes above xf.

9. Gleit actually solves a fmite time horizon problem; hence, we do
not present his precise results.

10. Gleit derives an explicit solution for h* where g{x) is assumed
linear. This case, of course, is not appropriate for fisheries problems.

11. The conditions are that J^x < 0 and the Arrow-Pratt measure of
relative risk aversion is less than unity. This result is obtained by totally
differentiating the above condition.
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