104 research outputs found
Energy Safety Management: A Training Model to Improve Flight Safety
Failing to properly manage an airplane’s energy state can be unforgiving. Mismanagement of mechanical energy (altitude and/or airspeed) is a contributing factor to three common types of fatal accidents in aviation: loss of control in flight, approach and landing accidents, and controlled flight into terrain. Recognizing the importance of energy management, the Federal Aviation Administration has incorporated new elements into the Airman Certification Standards, emphasizing knowledge of energy management concepts and the consequences of mishandling an airplane’s energy state. Unfortunately, no adequate guidance has been available in terms of defining key energy management concepts or suggesting how these should be taught to the average pilot and applied to everyday flying. This article introduces energy safety management (ESM) as a best practice for incorporating energy management into pilot training. First, ESM integrates three well-tested energy management theories developed independently in engineering, military science, and biology. Second, ESM relies on the power of simple analogies and a pilot-oriented approach to make energy management principles accessible and practical to any airplane pilot operating standard propulsion/flight control systems and existing cockpit displays. Third, to organize and optimize learning, ESM incorporates a well-known human performance framework that establishes how humans learn to perform new tasks. In sum, this article offers both the rationale and the road map for an outside-the-box instructional approach illustrating how established complex scientific concepts can be taught to any pilot. The ESM training model has successfully been applied to design a new college course and, in collaboration with the Federal Aviation Administration, is being used to support and develop new energy management guidance materials for pilots
Abnormalities in cardiac-induced brain tissue deformations are now detectable with MRI: A case-report of a patient who underwent craniotomy after trauma
Background: Heartbeat and respiration induce cyclic brain tissue deformations, which receive increasing attention as potential driving force for brain clearance. These deformations can now be assessed using a novel 3D strain tensor imaging (STI) method at 7 T MRI. Methods: An 18-year-old man had suffered a traumatic brain injury and was treated with a craniotomy with a maximal diameter of 12 cm. STI was employed to capture cardiac-induced brain tissue deformations and additional time-resolved 2D flow measurements were acquired to capture cerebrospinal fluid (CSF) flow towards the spinal canal. Results: The craniotomy caused major changes in all aspects of the brain's mechanical dynamics as compared to healthy volunteer references. Tissue strains increased, particularly around the craniotomy, and directionality of deformations showed large abnormalities, also in the contralateral hemisphere. As the brain tissue could pulsate outward from the skull, physiological pulsatile CSF flow at the foramen magnum was abolished. Conclusions: This work illustrates how STI can assess physiological patterns of brain tissue deformation and how craniotomy leads to widespread deformation abnormalities that can be detected at a single patient level. While this case is meant to provide proof of concept, application of STI in other conditions of abnormal brain mechanical dynamics warrants further study
Optical Detection of Preneoplastic Lesions of the Central Airways
Current routine diagnosis of premalignant lesions of the central airways is hampered due to a limited sensitivity (white light bronchoscopy) and resolution (computer tomography (CT), positron emission tomography (PET)) of currently used techniques. To improve the detection of these subtle mucosal abnormalities, novel optical imaging bronchoscopic techniques have been developed over the past decade. In this review we highlight the technological developments in the field of endoscopic imaging, and describe their advantages and disadvantages in clinical use
The future of medical diagnostics: Review paper
While histopathology of excised tissue remains the gold standard for diagnosis, several new, non-invasive diagnostic techniques are being developed. They rely on physical and biochemical changes that precede and mirror malignant change within tissue. The basic principle involves simple optical techniques of tissue interrogation. Their accuracy, expressed as sensitivity and specificity, are reported in a number of studies suggests that they have a potential for cost effective, real-time, in situ diagnosis. We review the Third Scientific Meeting of the Head and Neck Optical Diagnostics Society held in Congress Innsbruck, Innsbruck, Austria on the 11th May 2011. For the first time the HNODS Annual Scientific Meeting was held in association with the International Photodynamic Association (IPA) and the European Platform for Photodynamic Medicine (EPPM). The aim was to enhance the interdisciplinary aspects of optical diagnostics and other photodynamic applications. The meeting included 2 sections: oral communication sessions running in parallel to the IPA programme and poster presentation sessions combined with the IPA and EPPM posters sessions. © 2011 Jerjes et al; licensee BioMed Central Ltd
Using social cognitive career theory to understand why students choose to study computer science
The aim of this research is to use Social Cognitive Career Theory (SCCT) to identify and understand reasons why students choose to study Computer Science (CS) at university. SCCT focuses on students’ prior experience, social support, self-efficacy and outcome expectation. The research is part motivated by the desire to increase female participation rates in CS, particularly in the UK. Policymakers can use the factors that both females and males identify as influencing their choice of studying CS to enhance the experiences of all students prior to coming to university, but female students in particular. The study uses a semi-structured interview with 17 mixed gender subjects currently studying CS at three Scottish universities. The findings are that social support from family, teachers, friends and mentors is a particularly important factor in choosing to study CS, especially for female subjects. The career paths offered by a CS degree is another major factor, not just the potential jobs, but also the general value of a CS education and the potential to make useful contributions to society. School education appeared to have limited influence, though exposure to problem solving, programming, online self-learning and internships are positive influences. The stereotypical view of CS students as ‘geeks’ is outdated and unhelpful – it is more appropriate to see them as ‘analytical’ or ‘over-achievers’. Subjects make many suggestions for improving the CS education provided at school, especially to make it more attractive to females, including: make it compulsory, teach it earlier, include more programming and problem solving, and increase the visibility of female exemplars and role models
Apoptosis- and necrosis-induced changes in light attenuation measured by optical coherence tomography
Optical coherence tomography (OCT) was used to determine optical properties of pelleted human fibroblasts in which necrosis or apoptosis had been induced. We analysed the OCT data, including both the scattering properties of the medium and the axial point spread function of the OCT system. The optical attenuation coefficient in necrotic cells decreased from 2.2 ± 0.3 mm−1 to 1.3 ± 0.6 mm−1, whereas, in the apoptotic cells, an increase to 6.4 ± 1.7 mm−1 was observed. The results from cultured cells, as presented in this study, indicate the ability of OCT to detect and differentiate between viable, apoptotic, and necrotic cells, based on their attenuation coefficient. This functional supplement to high-resolution OCT imaging can be of great clinical benefit, enabling on-line monitoring of tissues, e.g. for feedback in cancer treatment
- …