126 research outputs found

    Mesenchymal Stromal Cell Secretome: Influencing Therapeutic Potential by Cellular Pre-conditioning

    Get PDF
    Mesenchymal stromal cells (MSCs) are self-renewing, culture-expandable adult stem cells that have been isolated from a variety of tissues, and possess multipotent differentiation capacity, immunomodulatory properties, and are relatively non-immunogenic. Due to this unique set of characteristics, these cells have attracted great interest in the field of regenerative medicine and have been shown to possess pronounced therapeutic potential in many different pathologies. MSCs' mode of action involves a strong paracrine component resulting from the high levels of bioactive molecules they secrete in response to the local microenvironment. For this reason, MSCs' secretome is currently being explored in several clinical contexts, either using MSC-conditioned media (CM) or purified MSC-derived extracellular vesicles (EVs) to modulate tissue response to a wide array of injuries. Rather than being a constant mixture of molecular factors, MSCs' secretome is known to be dependent on the diverse stimuli present in the microenvironment that MSCs encounter. As such, the composition of the MSCs' secretome can be modulated by preconditioning the MSCs during in vitro culture. This manuscript reviews the existent literature on how preconditioning of MSCs affects the therapeutic potential of their secretome, focusing on MSCs' immunomodulatory and regenerative features, thereby providing new insights for the therapeutic use of MSCs' secretome.We would like to acknowledge Norte Portugal Regional Operational Programme (NORTE 2020) in the framework of the project “Bioengineered Therapies for Infectious Diseases and Tissue Regeneration” (NORTE-01-0145-FEDER-000012). We also acknowledge Fundação para a Ciência e a Tecnologia (FCT) and Fundo Europeu de Desenvolvimento Regional (FEDER) funds through the COMPETE 2020-Operacional Programme for Competitiveness and Internationalization (POCI), Portugal 2020-in the framework of the project “Institute for Research and Innovation in Health Sciences” (POCI-01-0145-FEDER-007274). We also acknowledge EUROSPINE TRF for the funded project “Disc Regeneration, Immuno, and Neuro Modulation” , ref. 2017_05 . In addition, JF and RG also acknowledge FCT for funding the BiotechHealth Ph.D. fellowship (PD/BD/135486/2018) and the FCT Investigator Grant (IF/00638/2014), respectively

    Evaluating Interaction of Cord Blood Hematopoietic Stem/Progenitor Cells with Functionally Integrated Three-Dimensional Microenvironments

    Get PDF
    Despite advances in ex vivo expansion of cord blood-derived hematopoietic stem/progenitor cells (CB-HSPC), challenges still remain regarding the ability to obtain, from a single unit, sufficient numbers of cells to treat an adolescent or adult patient. We and others have shown that CB-HSPC can be expanded ex vivo in two-dimensional (2D) cultures, but the absolute percentage of the more primitive stem cells decreases with time. During development, the fetal liver is the main site of HSPC expansion. Therefore, here we investigated, in vitro, the outcome of interactions of primitive HSPC with surrogate fetal liver environments. We compared bioengineered liver constructs made from a natural three-dimensional-liver-extracellular-matrix (3D-ECM) seeded with hepatoblasts, fetal liver-derived (LvSt), or bone marrow-derived stromal cells, to their respective 2D culture counterparts. We showed that the inclusion of cellular components within the 3D-ECM scaffolds was necessary for maintenance of HSPC viability in culture, and that irrespective of the microenvironment used, the 3D-ECM structures led to the maintenance of a more primitive subpopulation of HSPC, as determined by flow cytometry and colony forming assays. In addition, we showed that the timing and extent of expansion depends upon the biological component used, with LvSt providing the optimal balance between preservation of primitive CB HSPC and cellular differentiation. Stem Cells Translational Medicine 2018;7:271–282

    KDR receptor: A key marker defining hematopoietic stem cells

    Get PDF
    Studies on pluripotent hematopoietic stem cells (HSCs) have been hindered by lack of a positive marker, comparable to the CD34 marker of hematopoietic progenitor cells (HPCs). In human postnatal hematopoietic tissues, 0.1 to 0.5% of CD34+cells expressed vascular endothelial growth factor receptor 2 (VEGFR2, also known as KDR). Pluripotent HSCs were restricted to the CD34+KDR+cell fraction. Conversely, lineage-committed HPCs were in the CD34+KDR-subset. On the basis of limiting dilution analysis, the HSC frequency in the CD34+KDR+fraction was 20 percent in bone marrow (BM) by mouse xenograft assay and 25 to 42 percent in BM, peripheral blood, and cord blood by 12-week long-term culture (LTC) assay. The latter values rose to 53 to 63 percent in LTC supplemented with VEGF and to greater than 95 percent for the cell subfraction resistant to growth factor starvation. Thus, KDR is a positive functional marker defining stem cells and distinguishing them from progenitors

    Mesenchymal Stromal Cell Secretome: Influencing Therapeutic Potential by Cellular Pre-conditioning

    Get PDF
    Mesenchymal stromal cells (MSCs) are self-renewing, culture-expandable adult stem cells that have been isolated from a variety of tissues, and possess multipotent differentiation capacity, immunomodulatory properties, and are relatively non-immunogenic. Due to this unique set of characteristics, these cells have attracted great interest in the field of regenerative medicine and have been shown to possess pronounced therapeutic potential in many different pathologies. MSCs' mode of action involves a strong paracrine component resulting from the high levels of bioactive molecules they secrete in response to the local microenvironment. For this reason, MSCs' secretome is currently being explored in several clinical contexts, either using MSC-conditioned media (CM) or purified MSC-derived extracellular vesicles (EVs) to modulate tissue response to a wide array of injuries. Rather than being a constant mixture of molecular factors, MSCs' secretome is known to be dependent on the diverse stimuli present in the microenvironment that MSCs encounter. As such, the composition of the MSCs' secretome can be modulated by preconditioning the MSCs during in vitro culture. This manuscript reviews the existent literature on how preconditioning of MSCs affects the therapeutic potential of their secretome, focusing on MSCs' immunomodulatory and regenerative features, thereby providing new insights for the therapeutic use of MSCs' secretome

    Soluble perlecan domain i enhances vascular endothelial growth factor-165 activity and receptor phosphorylation in human bone marrow endothelial cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Immobilized recombinant perlecan domain I (PlnDI) binds and modulates the activity of heparin-binding growth factors, <it>in vitro</it>. However, activities for PlnDI, in solution, have not been reported. In this study, we assessed the ability of soluble forms to modulate vascular endothelial growth factor-165 (VEGF<sub>165</sub>) enhanced capillary tube-like formation, and VEGF receptor-2 phosphorylation of human bone marrow endothelial cells, <it>in vitro</it>.</p> <p>Results</p> <p>In solution, PlnDI binds VEGF<sub>165 </sub>in a heparan sulfate and pH dependent manner. Capillary tube-like formation is enhanced by exogenous PlnDI; however, PlnDI/VEGF<sub>165 </sub>mixtures combine to enhance formation beyond that stimulated by either PlnDI or VEGF<sub>165 </sub>alone. PlnDI also stimulates VEGF receptor-2 phosphorylation, and mixtures of PlnDI/VEGF<sub>165 </sub>reduce the time required for peak VEGF receptor-2 phosphorylation (Tyr-951), and increase Akt phosphorylation. PlnDI binds both immobilized neuropilin-1 and VEGF receptor-2, but has a greater affinity for neuropilin-1. PlnDI binding to neuropilin-1, but not to VEGF receptor-2 is dependent upon the heparan sulfate chains adorning PlnDI. Interestingly, the presence of VEGF<sub>165 </sub>but not VEGF<sub>121 </sub>significantly enhances PlnDI binding to Neuropilin-1 and VEGF receptor-2.</p> <p>Conclusions</p> <p>Our observations suggest soluble forms of PlnDI are biologically active. Moreover, PlnDI heparan sulfate chains alone or together with VEGF<sub>165 </sub>can enhance VEGFR-2 signaling and angiogenic events, <it>in vitro</it>. We propose PlnDI liberated during basement membrane or extracellular matrix turnover may have similar activities, <it>in vivo</it>.</p

    Invasive characteristics of human prostatic epithelial cells: understanding the metastatic process

    Get PDF
    Prostate cancer has a predilection to metastasise to the bone marrow stroma (BMS) by an as yet uncharacterised mechanism. We have defined a series of coculture models of invasion, which simulate the blood/BMS boundary and allow the elucidation of the signalling and mechanics of trans-endothelial migration within the complex bone marrow environment. Confocal microscopy shows that prostate epithelial cells bind specifically to bone marrow endothelial-to-endothelial cell junctions and initiate endothelial cell retraction. Trans-endothelial migration proceeds via an epithelial cell pseudopodial process, with complete epithelial migration occurring after 232±43 min. Stromal-derived factor-1 (SDF-1)/CXCR4 signalling induced PC-3 to invade across a basement membrane although the level of invasion was 3.5-fold less than invasion towards BMS (P=0.0007) or bone marrow endothelial cells (P=0.004). Maximal SDF-1 signalling of invasion was completely inhibited by 10 μM of the SDF-1 inhibitor T140. However, 10 μM T140 only reduced invasion towards BMS and bone marrow endothelial cells by 59% (P=0.001) and 29% (P=0.011), respectively. This study highlights the need to examine the potential roles of signalling molecules and/or inhibitors, not just in single-cell models but in coculture models that mimic the complex environment of the bone marrow

    Modulation of Human Mesenchymal Stem Cell Immunogenicity through Forced Expression of Human Cytomegalovirus US Proteins

    Get PDF
    BACKGROUND: Mesenchymal stem cells (MSC) are promising candidates for cell therapy, as they migrate to areas of injury, differentiate into a broad range of specialized cells, and have immunomodulatory properties. However, MSC are not invisible to the recipient's immune system, and upon in vivo administration, allogeneic MSC are able to trigger immune responses, resulting in rejection of the transplanted cells, precluding their full therapeutic potential. Human cytomegalovirus (HCMV) has developed several strategies to evade cytotoxic T lymphocyte (CTL) and Natural Killer (NK) cell recognition. Our goal is to exploit HCMV immunological evasion strategies to reduce MSC immunogenicity. METHODOLOGY/PRINCIPAL FINDINGS: We genetically engineered human MSC to express HCMV proteins known to downregulate HLA-I expression, and investigated whether modified MSC were protected from CTL and NK attack. Flow cytometric analysis showed that amongst the US proteins tested, US6 and US11 efficiently reduced MSC HLA-I expression, and mixed lymphocyte reaction demonstrated a corresponding decrease in human and sheep mononuclear cell proliferation. NK killing assays showed that the decrease in HLA-I expression did not result in increased NK cytotoxicity, and that at certain NK∶MSC ratios, US11 conferred protection from NK cytotoxic effects. Transplantation of MSC-US6 or MSC-US11 into pre-immune fetal sheep resulted in increased liver engraftment when compared to control MSC, as demonstrated by qPCR and immunofluorescence analyses. CONCLUSIONS AND SIGNIFICANCE: These data demonstrate that engineering MSC to express US6 and US11 can be used as a means of decreasing recognition of MSC by the immune system, allowing higher levels of engraftment in an allogeneic transplantation setting. Since one of the major factors responsible for the failure of allogeneic-donor MSC to engraft is the mismatch of HLA-I molecules between the donor and the recipient, MSC-US6 and MSC-US11 could constitute an off-the-shelf product to overcome donor-recipient HLA-I mismatch

    Panax ginseng Modulates Cytokines in Bone Marrow Toxicity and Myelopoiesis: Ginsenoside Rg1 Partially Supports Myelopoiesis

    Get PDF
    In this study, we have demonstrated that Korean Panax ginseng (KG) significantly enhances myelopoiesis in vitro and reconstitutes bone marrow after 5-flurouracil-induced (5FU) myelosuppression in mice. KG promoted total white blood cell, lymphocyte, neutrophil and platelet counts and improved body weight, spleen weight, and thymus weight. The number of CFU-GM in bone marrow cells of mice and serum levels of IL-3 and GM-CSF were significantly improved after KG treatment. KG induced significant c-Kit, SCF and IL-1 mRNA expression in spleen. Moreover, treatment with KG led to marked improvements in 5FU-induced histopathological changes in bone marrow and spleen, and partial suppression of thymus damage. The levels of IL-3 and GM-CSF in cultured bone marrow cells after 24 h stimulation with KG were considerably increased. The mechanism underlying promotion of myelopoiesis by KG was assessed by monitoring gene expression at two time-points of 4 and 8 h. Treatment with Rg1 (0.5, 1 and 1.5 µmol) specifically enhanced c-Kit, IL-6 and TNF-α mRNA expression in cultured bone marrow cells. Our results collectively suggest that the anti-myelotoxicity activity and promotion of myelopoiesis by KG are mediated through cytokines. Moreover, the ginsenoside, Rg1, supports the role of KG in myelopoiesis to some extent
    corecore