1,048 research outputs found

    Electron-muon correlation as a new probe to strongly interacting quark-gluon plasma

    Full text link
    As a new and clean probe to the strongly interacting quark-gluon plasma (sQGP), we propose an azimuthal correlation of an electron and a muon which originate from the semileptonic decay of charm and bottom quarks. By solving the Langevin equation for the heavy quarks under the hydrodynamic evolution of the hot plasma, we show that substantial quenching of the away-side peak in the electron-muon correlation can be seen if the sQGP drag force acting on heavy quarks is large enough as suggested from the gauge/gravity correspondence. The effect could be detected in high-energy heavy-ion collisions at the Relativistic Heavy Ion Collider and the Large Hadron Collider.Comment: 4 pages, 2 figure

    Predicting and verifying transition strengths from weakly bound molecules

    Full text link
    We investigated transition strengths from ultracold weakly bound 41K87Rb molecules produced via the photoassociation of laser-cooled atoms. An accurate potential energy curve of the excited state (3)1Sigma+ was constructed by carrying out direct potential fit analysis of rotational spectra obtained via depletion spectroscopy. Vibrational energies and rotational constants extracted from the depletion spectra of v'=41-50 levels were combined with the results of the previous spectroscopic study, and they were used for modifying an ab initio potential. An accuracy of 0.14% in vibrational level spacing and 0.3% in rotational constants was sufficient to predict the large observed variation in transition strengths among the vibrational levels. Our results show that transition strengths from weakly bound molecules are a good measure of the accuracy of an excited state potential.Comment: 7 pages, 7 figure

    Rayleigh-Taylor instability and mushroom-pattern formation in a two-component Bose-Einstein condensate

    Full text link
    The Rayleigh-Taylor instability at the interface in an immiscible two-component Bose-Einstein condensate is investigated using the mean-field and Bogoliubov theories. Rayleigh-Taylor fingers are found to grow from the interface and mushroom patterns are formed. Quantized vortex rings and vortex lines are then generated around the mushrooms. The Rayleigh-Taylor instability and mushroom-pattern formation can be observed in a trapped system.Comment: 5 pages, 4 figure

    Pattern Stability and Trijunction Motion in Eutectic Solidification

    Full text link
    We demonstrate by both experiments and phase-field simulations that lamellar eutectic growth can be stable for a wide range of spacings below the point of minimum undercooling at low velocity, contrary to what is predicted by existing stability analyses. This overstabilization can be explained by relaxing Cahn's assumption that lamellae grow locally normal to the eutectic interface.Comment: 4 pages, 5 eps figure

    Dynamics of a faceted nematic-smectic B front in thin-sample directional solidification

    Full text link
    We present an experimental study of the directional-solidification patterns of a nematic - smectic B front. The chosen system is C_4H_9-(C_6H_{10})_2CN (in short, CCH4) in 12 \mu m-thick samples, and in the planar configuration (director parallel to the plane of the sample). The nematic - smectic B interface presents a facet in one direction -- the direction parallel to the smectic layers -- and is otherwise rough, and devoid of forbidden directions. We measure the Mullins-Sekerka instability threshold and establish the morphology diagram of the system as a function of the solidification rate V and the angle theta_{0} between the facet and the isotherms. We focus on the phenomena occurring immediately above the instability threshold when theta_{0} is neither very small nor close to 90^{o}. Under these conditions we observe drifting shallow cells and a new type of solitary wave, called "faceton", which consists essentially of an isolated macroscopic facet traveling laterally at such a velocity that its growth rate with respect to the liquid is small. Facetons may propagate either in a stationary, or an oscillatory way. The detailed study of their dynamics casts light on the microscopic growth mechanisms of the facets in this system.Comment: 12 pages, 19 figures, submitted to Phys. Rev.

    Optimising the multiplex factor of the frequency domain multiplexed readout of the TES-based microcalorimeter imaging array for the X-IFU instrument on the Athena Xray observatory

    Full text link
    Athena is a space-based X-ray observatory intended for exploration of the hot and energetic universe. One of the science instruments on Athena will be the X-ray Integrated Field Unit (X-IFU), which is a cryogenic X-ray spectrometer, based on a large cryogenic imaging array of Transition Edge Sensors (TES) based microcalorimeters operating at a temperature of 100mK. The imaging array consists of 3800 pixels providing 2.5 eV spectral resolution, and covers a field of view with a diameter of of 5 arc minutes. Multiplexed readout of the cryogenic microcalorimeter array is essential to comply with the cooling power and complexity constraints on a space craft. Frequency domain multiplexing has been under development for the readout of TES-based detectors for this purpose, not only for the X-IFU detector arrays but also for TES-based bolometer arrays for the Safari instrument of the Japanese SPICA observatory. This paper discusses the design considerations which are applicable to optimise the multiplex factor within the boundary conditions as set by the space craft. More specifically, the interplay between the science requirements such as pixel dynamic range, pixel speed, and cross talk, and the space craft requirements such as the power dissipation budget, available bandwidth, and electromagnetic compatibility will be discussed

    SuzakuSuzaku X-ray study of the double radio relic galaxy cluster CIZA J2242.8+5301

    Get PDF
    Content: We present the results from SuzakuSuzaku observations of the merging cluster of galaxies CIZA J2242.8+5301 at zz=0.192. Aims. To study the physics of gas heating and particle acceleration in cluster mergers, we investigated the X-ray emission from CIZA J2242.8+5301, which hosts two giant radio relics in the northern/southern part of the cluster. Methods. We analyzed data from three-pointed Suzaku observations of CIZA J2242.8+5301 to derive the temperature distribution in four different directions. Results: The Intra-Cluster Medium (ICM) temperature shows a remarkable drop from 8.50.6+0.8_{-0.6}^{+0.8} keV to 2.70.4+0.7_{-0.4}^{+0.7} keV across the northern radio relic. The temperature drop is consistent with a Mach number Mn=2.70.4+0.7{\cal M}_n=2.7^{+0.7}_{-0.4} and a shock velocity vshock:n=2300400+700kms1v_{shock:n}=2300_{-400}^{+700}\rm\,km\,s^{-1}. We also confirm the temperature drop across the southern radio relic. However, the ICM temperature beyond this relic is much higher than beyond the northern one, which gives a Mach number Ms=1.70.3+0.4{\cal M}_s=1.7^{+0.4}_{-0.3} and shock velocity vshock:s=2040410+550kms1v_{shock:s}=2040_{-410}^{+550}\rm \,km\,s^{-1}. These results agree with other systems showing a relationship between the radio relics and shock fronts which are induced by merging activity. We compare the X-ray derived Mach numbers with the radio derived Mach numbers from the radio spectral index under the assumption of diffusive shock acceleration in the linear test particle regime. For the northern radio relic, the Mach numbers derived from X-ray and radio observations agree with each other. Based on the shock velocities, we estimate that CIZA J2242.8+5301 is observed approximately 0.6 Gyr after core passage. The magnetic field pressure at the northern relic is estimated to be 9% of the thermal pressure.Comment: 12 pages, 10 figures, A&A accepte

    Effects of interphase boundary anisotropy on the three-phase growth dynamics in the β(In) – In 2 Bi – γ(Sn) ternary-eutectic system

    Get PDF
    International audienceWe present an experimental investigation on the effects of the interphase energy anisotropy on the formation of three-phase growth microstructures during directional solidification (DS) of the β(In)-In2Bi-γ(Sn) ternary-eutectic system. Standard DS and rotating directional solidification (RDS) experiments were performed using thin alloy samples with real-time observation. We identified two main types of eutectic grains (EGs): (i) quasi-isotropic EGs within which the solidification dynamics do not exhibit any substantial anisotropy effect, and (ii) anisotropic EGs, within which RDS microstructures exhibit an alternation of locked and unlocked microstructures. EBSD analyses revealed (i) a strong tendency to an alignment of the In2Bi and γ(Sn) crystals (both hexagonal) with respect to the thin-sample walls, and (ii) the existence of special crystal orientation relationships (ORs) between the three solid phases in both quasi-isotropic and anisotropic EGs. We initiate a discussion on the dominating locking effect of the In2Bi-β(In) interphase boundary during quasi steady-state solidification, and the existence of strong crystal selection mechanisms during early nucleation and growth stages

    Radio observations of the double-relic galaxy cluster Abell 1240

    Get PDF
    We present LOFAR 120 − 168 MHz images of the merging galaxy cluster Abell 1240 that hosts double radio relics. In combination with the GMRT 595 − 629 MHz and VLA 2 − 4 GHz data, we characterised the spectral and polarimetric properties of the radio emission. The spectral indices for the relics steepen from their outer edges towards the cluster centre and the electric field vectors are approximately perpendicular to the major axes of the relics. The results are consistent with the picture that these relics trace large-scale shocks propagating outwards during the merger. Assuming diffusive shock acceleration (DSA), we obtain shock Mach numbers of M = 2.4 and 2.3 for the northern and southern shocks, respectively. For M ≲ 3 shocks, a pre-existing population of mildly relativistic electrons is required to explain the brightness of the relics due to the high (> 10 per cent) particle acceleration efficiency required. However, for M ≳ 4 shocks the required efficiency is ≳ 1% and ≳ 0.5%, respectively, which is low enough for shock acceleration directly from the thermal pool. We used the fractional polarization to constrain the viewing angle to ≥ 53 ± 3° and ≥ 39 ± 5° for the northern and southern shocks, respectively. We found no evidence for diffuse emission in the cluster central region. If the halo spans the entire region between the relics (∼1.8 Mpc) our upper limit on the power is P1.4 GHz = (1.4 ± 0.6) × 1023 W Hz−1 which is approximately equal to the anticipated flux from a cluster of this mass. However, if the halo is smaller than this, our constraints on the power imply that the halo is underluminous
    corecore