657 research outputs found

    Prognostic and predictive biomarkers in prostate cancer

    Get PDF
    Prostate cancer (PCa) is one of the leading causes of cancer death among males, especially in more developed countries. Diagnosis is often achieved at an early stage of the disease with prostate biopsy, following a screening test showing elevated serum levels of prostate-specific antigen or a positive digital rectal examination. Early detection of PCa has led to a substantial decline in the number of metastatic patients. However, the prostate-specific antigen screening test has proved to be a double-edged sword so far, as it also accounts for PCa overdiagnosis. Due to the variability of PCa features, accurate prognosis of PCa patients is very important for determining treatment options. Therefore, this review focuses on the most promising prognostic and predictive biomarkers in PCa, which are likely to play a pivotal role, alone or in panels, in the personalized medicine era that has recently emerged

    p-channel thin-film transistors based on spray-coated Cu2O films

    No full text
    Thin films of cuprous oxide (Cu2O) were grown using solution-based spray pyrolysis in ambient air and incorporated into hole-transporting thin-film transistors. The phase of the oxide was confirmed by X-ray diffraction measurements while the optical band gap of the films was determined to be ∼2.57 eV from optical transmission measurements. Electrical characterization of Cu2O films was performed using bottom-gate, bottom-contact transistors based on SiO2 gate dielectric and gold source-drain electrodes. As-prepared devices show clear p-channel operation with field-effect hole mobilities in the range of 10−4–10−3 cm2 V−1 s−1 with some devices exhibiting values close to 1 × 10−2 cm2 V−1 s−1

    Solution processed SnO2:Sb transparent conductive oxide as an alternative to indium tin oxide for applications in organic light emitting diodes

    Get PDF
    Here we present the deposition of antimony-doped tin oxide thin films using the ambient spray pyrolysis technique and demonstrate their implementation as transparent electrodes (anodes) in red, green and blue Organic Light emitting diodes. The films were spray coated at 380 oC from SnCl4 and SbCl3 solution blends in methanol and ∼230 nm thick films were investigated by means of x-ray diffraction, AFM, UV-Vis absorption spectroscopy, 4-point probe, Hall Effect and Kelvin Probe. It was found that for optimum antimony doping in the precursor solution of ∼2 wt%, the as-deposited ATO films exhibit excellent characteristics such as low surface roughness of RRMS∼6.3 nm, high work function (∼ -5.03 eV), wide direct band gap (∼4.2 eV), high transparency in the visible spectrum in excess of 85 % on glass, low sheet resistivity (∼32 Ohms/sq), high charge carrier concentration (∼6.35 × 10^20 cm-3) and carrier mobility of ∼32 cm2 V-1 s-1. Furthermore, the electrical and optical performance i.e. the turn on voltage and external quantum efficiency of red, green and blue OLEDs fabricated on optimized SnO2:Sb films were identical to those of OLEDs fabricated on commercially available ITO (Rs∼15 Ohms/sq) and were found to be in excess of 11 %, 0.3 % and 13 % for red, green and blue OLEDs respectivel

    Solution processed lanthanum aluminate gate dielectrics for use in metal oxide-based thin film transistors

    Get PDF
    We report on ZnO-based thin-film transistors (TFTs) employing lanthanum aluminate gate dielectrics (LaxAl1-xOy) grown by spray pyrolysis in ambient atmosphere at 440 C. The structural, electronic, optical, morphological, and electrical properties of the LaxAl1-xOy films and devices as a function ofthe lanthanum to aluminium atomic ratio were investigated using a wide range of characterization techniques such as UV-visible absorption spectroscopy, impedance spectroscopy, spectroscopic ellipsometry, atomic force microscopy, x-ray diffraction, and field-effect measurements. As deposited LaAlOy dielectrics exhibit a wide band gap (6.18eV), high dielectric constant (k~16),low roughness (1.9 nm), and very low leakage currents (106, subthreshold swing of 650 mV dec-11, and electron mobility of 12 cm2 V-1 s-1

    Advanced glycation end-products induce endoplasmic reticulum stress in human aortic endothelial cells

    Get PDF
    Background: Advanced glycation end products (AGEs), the final products of the Maillard reaction, have been shown to impair endothelial proliferation and function, thus contributing to endothelial cell injury present in diabetes, inflammatory and cardiovascular diseases. Endoplasmic reticulum (ER) stress triggered under hyperglycemic, hypoxic and oxidative conditions has been implicated in endothelial dysfunction through activation of the unfolded protein response (UPR). The present study investigates the role of AGEs in ER stress induction in human aortic endothelial cells exposed to variable AGE treatments. Methods: Human aortic endothelial cells (HAEC) were treated with increasing concentrations (100, 200 μg/mL) of AGE-bovine serum albumin (AGE-BSA) at different time-points (24, 48, 72 h). The induction of ER stress and the involved UPR components were investigated on mRNA and protein levels. Apoptosis was quantitatively determined by flow cytometry detecting propidium iodide expression and annexin V binding simultaneously. Results: AGEs administration significantly reduced HAEC proliferation in a time- and dose-dependent manner. An immediate induction of the ER chaperones GRP78, GRP94 and the transcriptional activator, XBP-1 was observed at 24 h and 48 h. A later induction of the phospho-lF2α and proapoptotic transcription factor CHOP was observed at 48 h and 72 h, being correlated with elevated early apoptotic cell numbers at the same time-points. Conclusions: The present study demonstrates that AGEs directly induce ER stress in human aortic endothelial cells, playing an important role in endothelial cell apoptosis. Targeting AGEs signaling pathways in order to alleviate ER stress may prove of therapeutic potential to endothelial dysfunction-related disorders

    Myeloid DAP12-associating lectin (MDL)-1 regulates synovial inflammation and bone erosion associated with autoimmune arthritis.

    Get PDF
    DNAX adaptor protein 12 (DAP12) is a trans-membrane adaptor molecule that transduces activating signals in NK and myeloid cells. Absence of functional Dap12 results in osteoclast defects and bone abnormalities. Because DAP12 has no extracelluar binding domains, it must pair with cell surface receptors for signal transduction. There are at least 15 known DAP12-associating cell surface receptors with distinct temporal and cell type-specific expression patterns. Our aim was to determine which receptors may be important in DAP12-associated bone pathologies. Here, we identify myeloid DAP12-associating lectin (MDL)-1 receptor (also known as CLEC5A) as a key regulator of synovial injury and bone erosion during autoimmune joint inflammation. Activation of MDL-1 leads to enhanced recruitment of inflammatory macrophages and neutrophils to the joint and promotes bone erosion. Functional blockade of MDL-1 receptor via Mdl1 deletion or treatment with MDL-1-Ig fusion protein reduces the clinical signs of autoimmune joint inflammation. These findings suggest that MDL-1 receptor may be a therapeutic target for treatment of immune-mediated skeletal disorders

    Transcriptional regulation of endothelin-1 expression by advanced glycation end-products in human aortic endothelium is mediated via NF-kappaΒ and AP-1

    Get PDF
    Advanced Glycation End-products (AGEs) are produced by the non-enzymatic glycation of proteins, lipids and nucleic acids, resulting in an overload of highly reactive molecules of endogenous or exogenous (dietary) origin. Increased AGE levels in circulation and concomitant elevated tissue deposition have been associated with diabetic complications, atheromatosis, ageing and more recently with polycystic ovary syndrome pathogenesis. Interaction of AGEs with their receptor RAGE (Receptor for AGEs) activates intracellular signaling pathways which induce targeted gene expression in endothelium including upregulation of cell adhesion molecules and endothelin-1 (ET-1), implicated in vascular injury and endothelial dysfunction. The purpose of this study is to explore the molecular mechanism of AGE-induced regulation of ET-1 gene/protein expression in human endothelial cells and investigate its functional relevance in normal rat vascular endothelium

    Early findings from a large-scale user study of CHESTNUT: Validations and implications

    Get PDF
    Towards a serendipitous recommender system with user-centred understanding, we have built CHESTNUT , an Information Theory-based Movie Recommender System, which introduced a more comprehensive understanding of the concept. Although off-line evaluations have already demonstrated that CHESTNUT has greatly improved serendip-ity performance, feedback on CHESTNUT from real-world users through online services are still unclear now. In order to evaluate how serendip-itous results could be delivered by CHESTNUT , we consequently designed , organized and conducted large-scale user study, which involved 104 participants from 10 campuses in 3 countries. Our preliminary feedback has shown that, compared with mainstream collaborative filtering techniques, though CHESTNUT limited users' feelings of unex-pectedness to some extent, it showed significant improvement in their feelings about certain metrics being both beneficial and interesting, which substantially increased users' experience of serendipity. Based on them, we have summarized three key takeaways, which would be beneficial for further designs and engineering of serendipitous recommender systems, from our perspective. All details of our large-scale user study could be found at https://github.com/unnc-idl-ucc/Early-Lessons-From-CHESTNU

    One-dimensional magnetic fluctuations in the spin-2 triangular lattice \alpha-NaMnO2

    Full text link
    The S=2 anisotropic triangular lattice alpha-NaMnO2 is studied by neutron inelastic scattering. Antiferromagnetic order occurs at T ~ 45 K with opening of a spin gap. The spectral weight of the magnetic dynamics above the gap (Delta ~ 7.5 meV) has been analysed by the single-mode approximation. Excellent agreement with the experiment is achieved when a dominant exchange interaction (|J|/k_B ~ 73 K), along the monoclinic b-axis and a sizeable easy-axis magnetic anisotropy (|D|/k_B ~ 3 K) are considered. Despite earlier suggestions for two-dimensional spin interactions, the dynamics illustrate strongly coupled antiferromagnetic S=2 chains and cancellation of the interchain exchange due to the lattice topology. alpha-NaMnO2 therefore represents a model system where the geometric frustration is resolved through the lowering of the dimensionality of the spin interactions.Comment: 4 pages, 4 figures, to be published in Physical Review Letter

    CHESTNUT: Improve serendipity in movie recommendation by an Information Theory-based collaborative filtering approach

    Get PDF
    The term serendipity has been understood narrowly in the Recommender System. Applying a user-centered approach, user-friendly serendipitous recommender systems are expected to be developed based on a good understanding of serendipity. In this paper, we introduce CHESTNUT , a memory-based movie collaborative filtering system to improve serendipity performance. Relying on a proposed Information Theory-based algorithm and previous study, we demonstrate a method of successfully injecting insight, unexpectedness and usefulness, which are key metrics for a more comprehensive understanding of serendipity, into a practical serendipitous runtime system. With lightweight experiments, we have revealed a few runtime issues and further optimized the same. We have evaluated CHESTNUT in both practicability and effectiveness , and the results show that it is fast, scalable and improves serendip-ity performance significantly, compared with mainstream memory-based collaborative filtering. The source codes of CHESTNUT are online at https://github.com/unnc-idl-ucc/CHESTNUT/
    corecore