203 research outputs found
The quantum one-time pad in the presence of an eavesdropper
A classical one-time pad allows two parties to send private messages over a
public classical channel -- an eavesdropper who intercepts the communication
learns nothing about the message. A quantum one-time pad is a shared quantum
state which allows two parties to send private messages or private quantum
states over a public quantum channel. If the eavesdropper intercepts the
quantum communication she learns nothing about the message. In the classical
case, a one-time pad can be created using shared and partially private
correlations. Here we consider the quantum case in the presence of an
eavesdropper, and find the single letter formula for the rate at which the two
parties can send messages using a quantum one-time pad
Locking of accessible information and implications for the security of quantum cryptography
The unconditional security of a quantum key distribution protocol is often
defined in terms of the accessible information, that is, the maximum mutual
information between the distributed key S and the outcome of an optimal
measurement on the adversary's (quantum) system. We show that, even if this
quantity is small, certain parts of the key S might still be completely
insecure when S is used in applications, such as for one-time pad encryption.
This flaw is due to a locking property of the accessible information: one
additional (physical) bit of information might increase the accessible
information by more than one bit.Comment: 5 pages; minor change
Sharp error terms for return time statistics under mixing conditions
We describe the statistics of repetition times of a string of symbols in a
stochastic process. Denote by T(A) the time elapsed until the process spells
the finite string A and by S(A) the number of consecutive repetitions of A. We
prove that, if the length of the string grows unbondedly, (1) the distribution
of T(A), when the process starts with A, is well aproximated by a certain
mixture of the point measure at the origin and an exponential law, and (2) S(A)
is approximately geometrically distributed. We provide sharp error terms for
each of these approximations. The errors we obtain are point-wise and allow to
get also approximations for all the moments of T(A) and S(A). To obtain (1) we
assume that the process is phi-mixing while to obtain (2) we assume the
convergence of certain contidional probabilities
Artificial Sequences and Complexity Measures
In this paper we exploit concepts of information theory to address the
fundamental problem of identifying and defining the most suitable tools to
extract, in a automatic and agnostic way, information from a generic string of
characters. We introduce in particular a class of methods which use in a
crucial way data compression techniques in order to define a measure of
remoteness and distance between pairs of sequences of characters (e.g. texts)
based on their relative information content. We also discuss in detail how
specific features of data compression techniques could be used to introduce the
notion of dictionary of a given sequence and of Artificial Text and we show how
these new tools can be used for information extraction purposes. We point out
the versatility and generality of our method that applies to any kind of
corpora of character strings independently of the type of coding behind them.
We consider as a case study linguistic motivated problems and we present
results for automatic language recognition, authorship attribution and self
consistent-classification.Comment: Revised version, with major changes, of previous "Data Compression
approach to Information Extraction and Classification" by A. Baronchelli and
V. Loreto. 15 pages; 5 figure
Strong Secrecy for Multiple Access Channels
We show strongly secret achievable rate regions for two different wiretap
multiple-access channel coding problems. In the first problem, each encoder has
a private message and both together have a common message to transmit. The
encoders have entropy-limited access to common randomness. If no common
randomness is available, then the achievable region derived here does not allow
for the secret transmission of a common message. The second coding problem
assumes that the encoders do not have a common message nor access to common
randomness. However, they may have a conferencing link over which they may
iteratively exchange rate-limited information. This can be used to form a
common message and common randomness to reduce the second coding problem to the
first one. We give the example of a channel where the achievable region equals
zero without conferencing or common randomness and where conferencing
establishes the possibility of secret message transmission. Both coding
problems describe practically relevant networks which need to be secured
against eavesdropping attacks.Comment: 55 page
Linking Classical and Quantum Key Agreement: Is There "Bound Information"?
After carrying out a protocol for quantum key agreement over a noisy quantum
channel, the parties Alice and Bob must process the raw key in order to end up
with identical keys about which the adversary has virtually no information. In
principle, both classical and quantum protocols can be used for this
processing. It is a natural question which type of protocols is more powerful.
We prove for general states but under the assumption of incoherent
eavesdropping that Alice and Bob share some so-called intrinsic information in
their classical random variables, resulting from optimal measurements, if and
only if the parties' quantum systems are entangled. In addition, we provide
evidence that the potentials of classical and of quantum protocols are equal in
every situation. Consequently, many techniques and results from quantum
information theory directly apply to problems in classical information theory,
and vice versa. For instance, it was previously believed that two parties can
carry out unconditionally secure key agreement as long as they share some
intrinsic information in the adversary's view. The analysis of this purely
classical problem from the quantum information-theoretic viewpoint shows that
this is true in the binary case, but false in general. More explicitly, bound
entanglement, i.e., entanglement that cannot be purified by any quantum
protocol, has a classical counterpart. This "bound intrinsic information"
cannot be distilled to a secret key by any classical protocol. As another
application we propose a measure for entanglement based on classical
information-theoretic quantities.Comment: Accepted for Crypto 2000. 17 page
Reexamination of Quantum Bit Commitment: the Possible and the Impossible
Bit commitment protocols whose security is based on the laws of quantum
mechanics alone are generally held to be impossible. In this paper we give a
strengthened and explicit proof of this result. We extend its scope to a much
larger variety of protocols, which may have an arbitrary number of rounds, in
which both classical and quantum information is exchanged, and which may
include aborts and resets. Moreover, we do not consider the receiver to be
bound to a fixed "honest" strategy, so that "anonymous state protocols", which
were recently suggested as a possible way to beat the known no-go results are
also covered. We show that any concealing protocol allows the sender to find a
cheating strategy, which is universal in the sense that it works against any
strategy of the receiver. Moreover, if the concealing property holds only
approximately, the cheat goes undetected with a high probability, which we
explicitly estimate. The proof uses an explicit formalization of general two
party protocols, which is applicable to more general situations, and a new
estimate about the continuity of the Stinespring dilation of a general quantum
channel. The result also provides a natural characterization of protocols that
fall outside the standard setting of unlimited available technology, and thus
may allow secure bit commitment. We present a new such protocol whose security,
perhaps surprisingly, relies on decoherence in the receiver's lab.Comment: v1: 26 pages, 4 eps figures. v2: 31 pages, 5 eps figures; replaced
with published version; title changed to comply with puzzling Phys. Rev.
regulations; impossibility proof extended to protocols with infinitely many
rounds or a continuous communication tree; security proof of decoherence
monster protocol expanded; presentation clarifie
Security against eavesdropping in quantum cryptography
In this article we deal with the security of the BB84 quantum cryptography
protocol over noisy channels using generalized privacy amplification. For this
we estimate the fraction of bits needed to be discarded during the privacy
amplification step. This estimate is given for two scenarios, both of which
assume the eavesdropper to access each of the signals independently and take
error correction into account. One scenario does not allow a delay of the
eavesdropper's measurement of a measurement probe until he receives additional
classical information. In this scenario we achieve a sharp bound. The other
scenario allows a measurement delay, so that the general attack of an
eavesdropper on individual signals is covered. This bound is not sharp but
allows a practical implementation of the protocol.Comment: 11 pages including 3 figures, contains new results not contained in
my Phys. Rev. A pape
The Security of Practical Quantum Key Distribution
Quantum key distribution (QKD) is the first quantum information task to reach
the level of mature technology, already fit for commercialization. It aims at
the creation of a secret key between authorized partners connected by a quantum
channel and a classical authenticated channel. The security of the key can in
principle be guaranteed without putting any restriction on the eavesdropper's
power.
The first two sections provide a concise up-to-date review of QKD, biased
toward the practical side. The rest of the paper presents the essential
theoretical tools that have been developed to assess the security of the main
experimental platforms (discrete variables, continuous variables and
distributed-phase-reference protocols).Comment: Identical to the published version, up to cosmetic editorial change
End-to-End Joint Antenna Selection Strategy and Distributed Compress and Forward Strategy for Relay Channels
Multi-hop relay channels use multiple relay stages, each with multiple relay
nodes, to facilitate communication between a source and destination.
Previously, distributed space-time codes were proposed to maximize the
achievable diversity-multiplexing tradeoff, however, they fail to achieve all
the points of the optimal diversity-multiplexing tradeoff. In the presence of a
low-rate feedback link from the destination to each relay stage and the source,
this paper proposes an end-to-end antenna selection (EEAS) strategy as an
alternative to distributed space-time codes. The EEAS strategy uses a subset of
antennas of each relay stage for transmission of the source signal to the
destination with amplify and forwarding at each relay stage. The subsets are
chosen such that they maximize the end-to-end mutual information at the
destination. The EEAS strategy achieves the corner points of the optimal
diversity-multiplexing tradeoff (corresponding to maximum diversity gain and
maximum multiplexing gain) and achieves better diversity gain at intermediate
values of multiplexing gain, versus the best known distributed space-time
coding strategies. A distributed compress and forward (CF) strategy is also
proposed to achieve all points of the optimal diversity-multiplexing tradeoff
for a two-hop relay channel with multiple relay nodes.Comment: Accepted for publication in the special issue on cooperative
communication in the Eurasip Journal on Wireless Communication and Networkin
- …