203 research outputs found

    The quantum one-time pad in the presence of an eavesdropper

    Get PDF
    A classical one-time pad allows two parties to send private messages over a public classical channel -- an eavesdropper who intercepts the communication learns nothing about the message. A quantum one-time pad is a shared quantum state which allows two parties to send private messages or private quantum states over a public quantum channel. If the eavesdropper intercepts the quantum communication she learns nothing about the message. In the classical case, a one-time pad can be created using shared and partially private correlations. Here we consider the quantum case in the presence of an eavesdropper, and find the single letter formula for the rate at which the two parties can send messages using a quantum one-time pad

    Locking of accessible information and implications for the security of quantum cryptography

    Full text link
    The unconditional security of a quantum key distribution protocol is often defined in terms of the accessible information, that is, the maximum mutual information between the distributed key S and the outcome of an optimal measurement on the adversary's (quantum) system. We show that, even if this quantity is small, certain parts of the key S might still be completely insecure when S is used in applications, such as for one-time pad encryption. This flaw is due to a locking property of the accessible information: one additional (physical) bit of information might increase the accessible information by more than one bit.Comment: 5 pages; minor change

    Sharp error terms for return time statistics under mixing conditions

    Get PDF
    We describe the statistics of repetition times of a string of symbols in a stochastic process. Denote by T(A) the time elapsed until the process spells the finite string A and by S(A) the number of consecutive repetitions of A. We prove that, if the length of the string grows unbondedly, (1) the distribution of T(A), when the process starts with A, is well aproximated by a certain mixture of the point measure at the origin and an exponential law, and (2) S(A) is approximately geometrically distributed. We provide sharp error terms for each of these approximations. The errors we obtain are point-wise and allow to get also approximations for all the moments of T(A) and S(A). To obtain (1) we assume that the process is phi-mixing while to obtain (2) we assume the convergence of certain contidional probabilities

    Artificial Sequences and Complexity Measures

    Get PDF
    In this paper we exploit concepts of information theory to address the fundamental problem of identifying and defining the most suitable tools to extract, in a automatic and agnostic way, information from a generic string of characters. We introduce in particular a class of methods which use in a crucial way data compression techniques in order to define a measure of remoteness and distance between pairs of sequences of characters (e.g. texts) based on their relative information content. We also discuss in detail how specific features of data compression techniques could be used to introduce the notion of dictionary of a given sequence and of Artificial Text and we show how these new tools can be used for information extraction purposes. We point out the versatility and generality of our method that applies to any kind of corpora of character strings independently of the type of coding behind them. We consider as a case study linguistic motivated problems and we present results for automatic language recognition, authorship attribution and self consistent-classification.Comment: Revised version, with major changes, of previous "Data Compression approach to Information Extraction and Classification" by A. Baronchelli and V. Loreto. 15 pages; 5 figure

    Strong Secrecy for Multiple Access Channels

    Full text link
    We show strongly secret achievable rate regions for two different wiretap multiple-access channel coding problems. In the first problem, each encoder has a private message and both together have a common message to transmit. The encoders have entropy-limited access to common randomness. If no common randomness is available, then the achievable region derived here does not allow for the secret transmission of a common message. The second coding problem assumes that the encoders do not have a common message nor access to common randomness. However, they may have a conferencing link over which they may iteratively exchange rate-limited information. This can be used to form a common message and common randomness to reduce the second coding problem to the first one. We give the example of a channel where the achievable region equals zero without conferencing or common randomness and where conferencing establishes the possibility of secret message transmission. Both coding problems describe practically relevant networks which need to be secured against eavesdropping attacks.Comment: 55 page

    Linking Classical and Quantum Key Agreement: Is There "Bound Information"?

    Get PDF
    After carrying out a protocol for quantum key agreement over a noisy quantum channel, the parties Alice and Bob must process the raw key in order to end up with identical keys about which the adversary has virtually no information. In principle, both classical and quantum protocols can be used for this processing. It is a natural question which type of protocols is more powerful. We prove for general states but under the assumption of incoherent eavesdropping that Alice and Bob share some so-called intrinsic information in their classical random variables, resulting from optimal measurements, if and only if the parties' quantum systems are entangled. In addition, we provide evidence that the potentials of classical and of quantum protocols are equal in every situation. Consequently, many techniques and results from quantum information theory directly apply to problems in classical information theory, and vice versa. For instance, it was previously believed that two parties can carry out unconditionally secure key agreement as long as they share some intrinsic information in the adversary's view. The analysis of this purely classical problem from the quantum information-theoretic viewpoint shows that this is true in the binary case, but false in general. More explicitly, bound entanglement, i.e., entanglement that cannot be purified by any quantum protocol, has a classical counterpart. This "bound intrinsic information" cannot be distilled to a secret key by any classical protocol. As another application we propose a measure for entanglement based on classical information-theoretic quantities.Comment: Accepted for Crypto 2000. 17 page

    Reexamination of Quantum Bit Commitment: the Possible and the Impossible

    Full text link
    Bit commitment protocols whose security is based on the laws of quantum mechanics alone are generally held to be impossible. In this paper we give a strengthened and explicit proof of this result. We extend its scope to a much larger variety of protocols, which may have an arbitrary number of rounds, in which both classical and quantum information is exchanged, and which may include aborts and resets. Moreover, we do not consider the receiver to be bound to a fixed "honest" strategy, so that "anonymous state protocols", which were recently suggested as a possible way to beat the known no-go results are also covered. We show that any concealing protocol allows the sender to find a cheating strategy, which is universal in the sense that it works against any strategy of the receiver. Moreover, if the concealing property holds only approximately, the cheat goes undetected with a high probability, which we explicitly estimate. The proof uses an explicit formalization of general two party protocols, which is applicable to more general situations, and a new estimate about the continuity of the Stinespring dilation of a general quantum channel. The result also provides a natural characterization of protocols that fall outside the standard setting of unlimited available technology, and thus may allow secure bit commitment. We present a new such protocol whose security, perhaps surprisingly, relies on decoherence in the receiver's lab.Comment: v1: 26 pages, 4 eps figures. v2: 31 pages, 5 eps figures; replaced with published version; title changed to comply with puzzling Phys. Rev. regulations; impossibility proof extended to protocols with infinitely many rounds or a continuous communication tree; security proof of decoherence monster protocol expanded; presentation clarifie

    Security against eavesdropping in quantum cryptography

    Get PDF
    In this article we deal with the security of the BB84 quantum cryptography protocol over noisy channels using generalized privacy amplification. For this we estimate the fraction of bits needed to be discarded during the privacy amplification step. This estimate is given for two scenarios, both of which assume the eavesdropper to access each of the signals independently and take error correction into account. One scenario does not allow a delay of the eavesdropper's measurement of a measurement probe until he receives additional classical information. In this scenario we achieve a sharp bound. The other scenario allows a measurement delay, so that the general attack of an eavesdropper on individual signals is covered. This bound is not sharp but allows a practical implementation of the protocol.Comment: 11 pages including 3 figures, contains new results not contained in my Phys. Rev. A pape

    The Security of Practical Quantum Key Distribution

    Full text link
    Quantum key distribution (QKD) is the first quantum information task to reach the level of mature technology, already fit for commercialization. It aims at the creation of a secret key between authorized partners connected by a quantum channel and a classical authenticated channel. The security of the key can in principle be guaranteed without putting any restriction on the eavesdropper's power. The first two sections provide a concise up-to-date review of QKD, biased toward the practical side. The rest of the paper presents the essential theoretical tools that have been developed to assess the security of the main experimental platforms (discrete variables, continuous variables and distributed-phase-reference protocols).Comment: Identical to the published version, up to cosmetic editorial change

    End-to-End Joint Antenna Selection Strategy and Distributed Compress and Forward Strategy for Relay Channels

    Full text link
    Multi-hop relay channels use multiple relay stages, each with multiple relay nodes, to facilitate communication between a source and destination. Previously, distributed space-time codes were proposed to maximize the achievable diversity-multiplexing tradeoff, however, they fail to achieve all the points of the optimal diversity-multiplexing tradeoff. In the presence of a low-rate feedback link from the destination to each relay stage and the source, this paper proposes an end-to-end antenna selection (EEAS) strategy as an alternative to distributed space-time codes. The EEAS strategy uses a subset of antennas of each relay stage for transmission of the source signal to the destination with amplify and forwarding at each relay stage. The subsets are chosen such that they maximize the end-to-end mutual information at the destination. The EEAS strategy achieves the corner points of the optimal diversity-multiplexing tradeoff (corresponding to maximum diversity gain and maximum multiplexing gain) and achieves better diversity gain at intermediate values of multiplexing gain, versus the best known distributed space-time coding strategies. A distributed compress and forward (CF) strategy is also proposed to achieve all points of the optimal diversity-multiplexing tradeoff for a two-hop relay channel with multiple relay nodes.Comment: Accepted for publication in the special issue on cooperative communication in the Eurasip Journal on Wireless Communication and Networkin
    corecore