2,148 research outputs found

    Analytical Study of Sub-Wavelength Imaging by Uniaxial Epsilon-Near-Zero Metamaterial Slabs

    Get PDF
    We discuss the imaging properties of uniaxial epsilon-near-zero metamaterial slabs with possibly tilted optical axis, analyzing their sub-wavelength focusing properties as a function of the design parameters. We derive in closed analytical form the associated two-dimensional Green's function in terms of special cylindrical functions. For the near-field parameter ranges of interest, we are also able to derive a small-argument approximation in terms of simpler analytical functions. Our results, validated and calibrated against a full-wave reference solution, expand the analytical tools available for computationally-efficient and physically-incisive modeling and design of metamaterial-based sub-wavelength imaging systems.Comment: 25 pages, 9 figures (modifications in the text; two figures and several references added

    Performance requirements analysis for payload delivery from a space station

    Get PDF
    Operations conducted from a space station in low Earth orbit which have different constraints and opportunities than those conducted from direct Earth launch were examined. While a space station relieves many size and performance constraints on the space shuttle, the space station's inertial orbit has different launch window constraints from those associated with customary Earth launches which reflect upon upper stage capability. A performance requirements analysis was developed to provide a reference source of parametric data, and specific case solutions and upper stage sizing trade to assist potential space station users and space station and upper stage developers assess the impacts of a space station on missions of interest

    Can Gravity Distinguish Between Dirac and Majorana Neutrinos?

    Get PDF
    We show that spin-gravity interaction can distinguish between Dirac and Majorana neutrino wave packets propagating in a Lense-Thirring background. Using time-independent perturbation theory and gravitational phase to generate a perturbation Hamiltonian with spin-gravity coupling, we show that the associated matrix element for the Majorana neutrino differs significantly from its Dirac counterpart. This difference can be demonstrated through significant gravitational corrections to the neutrino oscillation length for a two-flavour system, as shown explicitly for SN1987A.Comment: 4 pages, 2 figures; minor changes of text; typo corrected; accepted in Physical Review Letter

    Dynamical Stability and Habitability of Gamma Cephei Binary-Planetary System

    Full text link
    It has been suggested that the long-lived residual radial velocity variations observed in the precision radial velocity measurements of the primary of Gamma Cephei (HR8974, HD222404, HIP116727) are likely due to a Jupiter-like planet around this star (Hatzes et al, 2003). In this paper, the orbital dynamics of this plant is studied and also the possibility of the existence of a hypothetical Earth-like planet in the habitable zone of its central star is discussed. Simulations, which have been carried out for different values of the eccentricity and semimajor axis of the binary, as well as the orbital inclination of its Jupiter-like planet, expand on previous studies of this system and indicate that, for the values of the binary eccentricity smaller than 0.5, and for all values of the orbital inclination of the Jupiter-like planet ranging from 0 to 40 degrees, the orbit of this planet is stable. For larger values of the binary eccentricity, the system becomes gradually unstable. Integrations also indicate that, within this range of orbital parameters, a hypothetical Earth-like planet can have a long-term stable orbit only at distances of 0.3 to 0.8 AU from the primary star. The habitable zone of the primary, at a range of approximately 3.1 to 3.8 AU, is, however, unstable.Comment: 25 pages, 7 figures, 3 tables, submitted for publicatio

    A Metamaterial-Inspired Model for Electron Waves in Bulk Semiconductors

    Get PDF
    Based on an analogy with electromagnetic metamaterials, we develop an effective medium description for the propagation of electron matter waves in bulk semiconductors with a zincblende structure. It is formally demonstrated that even though departing from a different starting point, our theory gives results for the energy stationary states consistent with Bastard's envelope function approximation in the long-wavelength limit. Using the proposed approach, we discuss the time evolution of a wave packet in a bulk semiconductor with a zero-gap and linear energy-momentum dispersion.Comment: 43 pages, 4 figure

    Effect of l-Arginine on Human Coronary Endothelium-Dependent and Physiologic Vasodilation

    Get PDF
    AbstractObjectives. We hypothesized that l-arginine would improve abnormal coronary vasodilation in response to physiologic stress in patients with atherosclerosis and its risk factors by reversing coronary endothelial dysfunction.Background. Studies have demonstrated that physiologic coronary vasodilation correlates with endothelial function and that l-arginine, the substrate for nitric oxide synthesis, improves the response to acetylcholine (Ach).Methods. Changes in coronary blood flow and epicardial diameter response to Ach, adenosine and cardiac pacing were measured in 32 patients with coronary atherosclerosis or its risk factors and in 7 patients without risk factors and normal coronary angiograms.Results. Intracoronary l-arginine did not alter baseline coronary vascular tone, but the epicardial and microvascular responses to Ach were enhanced (both p < 0.001). The improvement after l-arginine was greater in epicardial segments that initially constricted with Ach; similarly, l-arginine abolished microvascular constriction produced by higher doses of Ach. Thus, there was a negative correlation between the initial epicardial and vascular resistance responses to Ach and the magnitude of improvement with l-arginine (r = −0.55 and r = −0.50, respectively, p < 0.001). d-Arginine did not affect the responses to Ach, and adenosine responses were unchanged with l-arginine. Cardiac pacing-induced epicardial constriction was abolished by l-arginine, but microvascular dilation remained unaffected.Conclusions. Thus, l-arginine improved endothelium-dependent coronary epicardial and microvascular function in patients with endothelial dysfunction. Prevention of epicardial constriction during physiologic stress by l-arginine in patients with endothelial dysfunction may be of therapeutic value in the treatment of myocardial ischemia

    Isospin violation and the proton's neutral weak magnetic form factor

    Get PDF
    The effects of isospin violation on the neutral weak magnetic form factor of the proton are studied using two-flavour chiral perturbation theory. The first nonzero contributions appear at O(p^4) in the small-momentum expansion, and the O(p^5) corrections are also calculated. The leading contributions from an explicit Delta(1232) isomultiplet are included as well. At such a high order in the chiral expansion, one might have expected a large number of unknown parameters to contribute. However, it is found that no unknown parameters can appear within loop diagrams, and a single tree-level counterterm at O(p^4) is sufficient to absorb all divergences. The momentum dependence of the neutral weak magnetic form factor is not affected by this counterterm.Comment: 26 pages including 9 figure
    • …
    corecore