
University of Pennsylvania
ScholarlyCommons

Departmental Papers (ESE) Department of Electrical & Systems Engineering

9-17-2012

Analytical study of subwavelength imaging by
uniaxial epsilon-near-zero metamaterial slabs
Giuseppe Castaldi
University of Sannio

Silvio Savoia
university of Sannio

Vincenzo Galdi
University of Sannio

Andrea Alù
University of Texas at Austin

Nader Engheta
University of Pennsylvania, engheta@ee.upenn.edu

Follow this and additional works at: http://repository.upenn.edu/ese_papers

Giuseppe Castaldi, Silvio Savoia, Vincenzo Galdi, Andrea Alù, & Nader Engheta. (2012). Analytical study of subwavelength imaging by uniaxial
epsilon-near-zero metamaterial slabs. Physical Review B, 86(11), 115123. doi: 10.1103/PhysRevB.86.115123
©2012 American Physical Society

This paper is posted at ScholarlyCommons. http://repository.upenn.edu/ese_papers/633
For more information, please contact repository@pobox.upenn.edu.

Recommended Citation
Giuseppe Castaldi, Silvio Savoia, Vincenzo Galdi, Andrea Alù, and Nader Engheta, "Analytical study of subwavelength imaging by
uniaxial epsilon-near-zero metamaterial slabs", . September 2012.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarlyCommons@Penn

https://core.ac.uk/display/76379183?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://repository.upenn.edu?utm_source=repository.upenn.edu%2Fese_papers%2F633&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/ese_papers?utm_source=repository.upenn.edu%2Fese_papers%2F633&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/ese?utm_source=repository.upenn.edu%2Fese_papers%2F633&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/ese_papers?utm_source=repository.upenn.edu%2Fese_papers%2F633&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.1103/PhysRevB.86.115123
http://repository.upenn.edu/ese_papers/633
mailto:repository@pobox.upenn.edu


Analytical study of subwavelength imaging by uniaxial epsilon-near-zero
metamaterial slabs

Abstract
We discuss the imaging properties of uniaxial epsilon-near-zero metamaterial slabs with possibly tilted optical
axis, analyzing their subwavelength focusing properties as a function of the design parameters. We derive in
closed analytical form the associated two-dimensional Green's function in terms of special cylindrical
functions. For the near-field parameter ranges of interest, we are also able to derive a small-argument
approximation in terms of simpler analytical functions. Our results, validated and calibrated against a full-wave
reference solution, expand the analytical tools available for computationally efficient and physically incisive
modeling and design of metamaterial-based subwavelength imaging systems.
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We discuss the imaging properties of uniaxial epsilon-near-zero metamaterial slabs with possibly tilted optical
axis, analyzing their subwavelength focusing properties as a function of the design parameters. We derive in
closed analytical form the associated two-dimensional Green’s function in terms of special cylindrical functions.
For the near-field parameter ranges of interest, we are also able to derive a small-argument approximation in
terms of simpler analytical functions. Our results, validated and calibrated against a full-wave reference solution,
expand the analytical tools available for computationally efficient and physically incisive modeling and design
of metamaterial-based subwavelength imaging systems.

DOI: 10.1103/PhysRevB.86.115123 PACS number(s): 78.67.Pt, 78.20.Ci, 41.20.Jb, 42.30.Wb

I. INTRODUCTION

The seminal work by Pendry1 demonstrated that a slab
of negative-index material (lossless and impedance-matched
with the surrounding medium) would ideally image a perfect
copy of a source. Such perfect lensing mechanism allows
the restoration of the subwavelength spatial details carried
by the evanescent spectral components via efficient cou-
pling to resonant surface-plasmon states, and may lead to
revolutionary applications in a variety of fields, including
nanolithography, biosensing, and spectroscopy. At infrared
and optical frequencies, where magnetic activity is difficult
to achieve and many materials may naturally exhibit negative
permittivity, an approximate implementation was suggested1

and experimentally demonstrated2–4 in the simple form of
a thin layer of silver, with severe restrictions on the field
polarization and near-field range, and the subwavelength
resolution ultimately limited by the material losses.

The above results have generated a growing interest in
the study of metallodielectric multilayered structures (see,
e.g., Refs. 5–18 for a sparse sampling), which allow mit-
igation of the above loss- and range-related limitations, as
well as further degrees of freedom for design optimization.
Essentially, these configurations exploit the inherent (possibly
extreme) anisotropy exhibited by metallodielectric multilayers
in order to convert evanescent spectral components with
large transverse wave numbers into propagating waves. More
recently, the use of obliquely layered structures has been
proposed in order to achieve simple image manipulation
(lateral displacement) with subwavelength resolution.19 Of
particular interest is the epsilon-near-zero (ENZ) regime,
which has also found interesting applications to other scenar-
ios, including cloaking,20,21 light funneling through subwave-
length apertures,22 controlled leaky-wave radiation,23 suppres-
sion of Anderson localization in disordered multilayers,24

loss-induced omnidirectional bending,25 and nonlinearity
enhancement.26,27 Also worth of mention are the studies on
subwavelength imaging devices based on wire media (see, e.g.,

Refs. 28–30) as well as on the transformation-optics paradigm
(see, e.g., Refs. 31–33).

With the exception of few cases (see, e.g., Refs. 8 and 17)
for which analytical approximations of the Green’s function
can be worked out, the imaging properties (e.g., resolution)
of the above configurations need to be assessed numerically.
In this paper, we study in more detail this geometry and we
show that the two-dimensional (2D) Green’s function of a slab
of uniaxial ENZ metamaterial with tilted optical axis can be
calculated analytically in closed form, greatly facilitating the
analysis and design of its anomalous imaging properties. Our
results are expressed in terms of special cylindrical functions
that can be efficiently computed, and are also amenable to
simple approximations in the parameter range of interest.
These findings shed new light on the subwavelength imaging
properties of ENZ metamaterial slabs and allow tailoring
their properties without the need of extensive numerical
simulations.

The rest of the paper is organized as follows. In Sec. II, we
introduce the problem geometry and formulation. In Sec. III,
we derive the analytical solution for the Green’s function
(with the more involved details relegated in Appendices A–
C), discuss the related computational issues, and work out
more manageable approximations for specific values of the
design parameters of interest. In Sec. IV, we illustrate some
representative results in order to validate and calibrate our
proposed solutions, and discuss relevant physical insights on
the imaging properties of the considered metamaterial lenses.
Finally, in Sec. V, we provide some brief conclusions.

II. PROBLEM GEOMETRY AND FORMULATION

A. Generalities

Figure 1 shows the geometry of the problem. We consider
a 2D scenario featuring a metamaterial slab of thickness d,
infinitely extent in the y and z directions, immersed in vacuum.
The metamaterial is assumed to be nonmagnetic and uniaxially
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FIG. 1. (Color online) Problem schematic: a magnetic-current
line source is placed at a distance xs from a uniaxially-anisotropic
metamaterial slab of thickness d and permittivity tensor ε given in
Eq. (1), immersed in vacuum. Also shown are the global (x,y) and
rotated (ξ,υ) Cartesian coordinate reference systems, as well as the
wave vector k of a propagating plane wave.

anisotropic with optical axis tilted of an angle α with respect to
the x axis. Accordingly, the corresponding permittivity tensor
is most naturally described in the rotated (principal) reference
system (ξ,υ,z)

ε{ξ,υ,z} = ε0

⎡
⎢⎣

εξ 0 0

0 ευ 0

0 0 ευ

⎤
⎥⎦ , (1)

and represents a rather general homogenized (effective-
medium-theory) model for diverse classes of artificial ma-
terials, such as multilayered structures or wire media. In
what follows, we assume that the homogenized constitutive
parameters in Eq. (1) do not depend on the wave vector. While
acknowledging the implied limitations in predicting nonlocal
effects that can take place in metallodielectric multilayers (see,
e.g., Refs. 34–36) or wire media (see, e.g., Refs. 37–39), we
focus here on this simplified model which is amenable to
analytical treatment.

The essential kinematical (wave vector, group velocity)
properties of wave propagation in such a medium may be
qualitatively understood by looking at the equifrequency
contours (EFCs). Once again, these are most easily studied
in the spectral wave number plane (kξ ,kυ) associated with the
rotated reference coordinate systems (ξ,υ) in Fig. 1, where
they assume the canonical form

k2
ξ

ευ

+ k2
υ

εξ

= k2
0, (2)

with k0 = ω
√

ε0μ0 = 2π/λ0 denoting the vacuum wave num-
ber (and λ0 the corresponding wavelength). At variance with
the circular shape exhibited by isotropic media, depending
on the sign of εξ and ευ , these EFCs may be either elliptic
(εξ ευ > 0) or hyperbolic (εξ ευ < 0), as exemplified in Fig. 2.
This implies, especially in the hyperbolic case [cf. Fig. 2(b)],

xk

yk

kξ
kυ

α

xk

yk

kξ
kυ

α

(a) (b)

FIG. 2. (Color online) Typical elliptic (a) and hyperbolic
(b) equifrequency contours (EFCs) pertaining to the dispersion
relation in Eq. (2), for εξ > ευ > 0 and εξ < 0,ευ > 0, respectively,
in the global (kx,ky) and rotated (kξ ,kυ ) spectral reference systems.

that spectral components characterized by large transverse
wave numbers (which would be otherwise evanescent) may
actually propagate. Moreover, in the ENZ limit (ευ → 0) of
interest, the EFCs tend to become much flatter along the kυ

direction, thereby implying that the allowed group velocities
(normal to the EFCs) tend to be directed along the ξ direction,
so that subwavelength details can be transported along the
optical axis direction. Such condition (in conjunction with
εξ → ∞), which was first proposed in Ref. 5 in order to
mitigate the loss-induced limitations in single-layer silver
superlenses, may be attained for multilayered structures
from standard mixing formulas40 using constituent materials
with opposite-signed permittivities (e.g., noble metals and
dielectrics, at optical frequencies). This condition was also
exploited in Ref. 10 for far-field subwavelength imaging. The
reader is referred to Refs. 11 and 12 for different extreme-
anisotropy-based subwavelength imaging systems relying on
Fabry-Perot resonance effects.

B. Green’s Function

From the above observations, we expect that the uniaxial
ENZ metamaterial slab of interest may exhibit subwavelength
image formation and lateral-displacement capabilities. In
what follows, we analytically study the response to a unit-
amplitude, time-harmonic [exp(−iωt)], z directed magnetic-
current (V/m2) line source located at a distance xs (typically
�λ0) from the slab (cf. Fig. 1)

Mz(x,y) = δ (x + xs) δ (y) . (3)

We start recalling the well-known Green’s function of vacuum
for the z-directed magnetic field,

G
(H )
0 (x,y; xs) = −ωε0

4
H(1)

0 [k0

√
(x + xs)2 + y2] (4a)

= −ωε0

4π

∫ ∞

−∞

exp[i(kx |x + xs | + kyy)]

kx

dky,

(4b)

in terms of the zeroth-order Hankel function of first kind H(1)
0

(cf. Sec. 9 in Ref. 41), or the corresponding spectral-integral
representation,42 with

kx =
√

k2
0 − k2

y, Im(kx) � 0. (5)
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Accordingly, the presence of the metamaterial slab can
be accounted for by introducing in the spectral integral
representation (4b) the corresponding transverse-magnetic
plane-wave transmission coefficient T (ky) and an appropriate
displacement along the x direction, viz.,

G
(H )
S (x,y; xs) = −ωε0

4π

∫ ∞

−∞

T (ky)

kx

× exp[i(kx |x + xs − d| + kyy)]dky. (6)

The spectral integral in Eq. (6) cannot be generally calculated
analytically in closed form. In certain regimes (see, e.g., Refs. 8
and 17), closed-form near-field approximations may be worked
out by applying Cauchy’s residue theorem and neglecting the
branch-cut contribution. However, in general, a brute-force
numerical integration is needed.

C. ENZ regime

In the limit ευ → 0 of interest, the transmission coefficient
to be considered in Eq. (6) reduces to (see Appendix A for
details)

T (ky) = 2εξ kx exp(−ikyd tan α)

2εξ kx − idεξ k
2
0 + idk2

y sec2 α
, (7)

from which it can be observed that total transmission (i.e.,
perfect impedance matching) can only be achieved for

ky = ±k0
√

εξ cos α. (8)

The above condition can be satisfied for propagating waves
impinging from vacuum (i.e., |ky | � k0) with incidence angle
(see Fig. 1)

θ = ± arcsin(
√

εξ cos α), (9)

which admits real solutions for positive values of εξ and√
εξ |cos α| � 1.
The transmission coefficient in Eq. (7) can be recast in a

convenient canonical form

T (ky) = �kx exp(−ikyd tan α)

(kx − κ1)(kx − κ2)
, (10)

where

� = 2iεξ cos2 α

d
, (11a)

κ1,2 = −
(

cos2 α

d

)[
iεξ ∓

√
k2

0d
2 sec2 α(sec2 α − εξ ) − ε2

ξ

]
.

(11b)

Accordingly, by substituting Eq. (10) into Eq. (6), the
slab response is reduced to calculating the canonical spectral
integral

G
(H )
S (x,y; xs) = −�ωε0

4π

∫ ∞

−∞

exp[i(kxxd + kyyd )]

(kx − κ1)(kx − κ2)
dky,

(12)

with Eq. (5) and

xd = x + xs − d, yd = y − d tan α. (13)

III. ANALYTICAL RESULTS

A. General solution

Introducing the (normalized) polar coordinates

ζ = k0

√
x2

d + y2
d , ϕ = arctan

(
yd

xd

)
, (14)

it can be shown (see Appendix B for details) that the canonical
spectral integral in Eq. (12) admits closed-form solutions of
the type

G
(H )
S (x,y; xs) = − �ωε0

4π (κ1 − κ2)
[F1(ζ,ϕ) − F2(ζ,ϕ)], (15)

where

F1,2(ζ,ϕ) = exp(a+
1,2ζ )

[
A+

1,2 + χ+
1,2He(1)

0 (a+
1,2,η

+
1,2,ζ )

]
+ exp(a−

1,2ζ )
[
A−

1,2 + χ−
1,2He(1)

0 (a−
1,2,η

−
1,2,ζ )

]
.

(16)

In Eq. (16), A+
1,2 and A−

1,2 are integration constants,

a±
1,2 =

i
(
κ1,2 cos ϕ ± | sin ϕ|

√
k2

0 − κ2
1,2

)
k0

,

(17)
Im

(√
k2

0 − κ2
1,2

)
� 0,

χ±
1,2 =

πκ1,2
(

cos ϕ

√
k2

0 − κ2
1,2 ∓ | sin ϕ|κ1,2

)
2ik0

√
k2

0 − κ2
1,2

, (18)

are known parameters depending on the frequency, slab
parameters, and observation direction, and

He(1)
0 (a,η,ζ ) =

∫ ζ

η

exp(−aτ )H(1)
0 (τ )dτ (19)

denotes the complementary incomplete Lipschitz-Hankel in-
tegral (CILHI) of the Hankel type43—a special function
belonging to the general class of incomplete cylindrical
function.44 These functions have insofar found applications
in other areas of electromagnetics, ranging from diffrac-
tion to traveling-wave sources (see, e.g., Ref. 45 for a
review)

The lower limit of integration η in Eq. (19) is chosen so as
to guarantee convergence at infinity in the complex τ plane,
viz.,

η =
{

∞, Re(a) � 0,

∞ exp(iπ ), Re(a) < 0.
(20)

The calculation of the ϕ-dependent integration constant
A+

1,2 and A−
1,2 in Eq. (16) is generally quite involved (see the

discussion in Appendix C). Nevertheless, for the near-field
configuration of direct interest to this investigation, featuring a
source located very close to the input slab interface (xs � λ0),
this calculation becomes remarkably simpler for two specific
observation planes located in the two principal planes of the
image, namely: transverse cuts at the output slab interface (x =
d), and orthogonal cuts passing through the fiducial image
position (yα = d tan α). For the former case (x = d), we obtain
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(see Appendix C for details)

A−
1,2 = 0, (21a)

A+
1,2 = C1,2 − χ+

1,2He(1)
0 (a+

1,2,η
+
1,2,0) − χ−

1,2He(1)
0 (a−

1,2,η
−
1,2,0),

(21b)

where

C1,2 = − iκ1,2√
k2

0 − κ2
1,2

{
2arctan

(
κ1,2√

k2
0 − κ2

1,2

)

+π{1 − 4u[Re(κ1,2)]u[Im(κ1,2)]}
}

, (22)

with u denoting the Heaviside unit-step function, and43

He(1)
0 (a,η,0) = 2i ln(a + √

a2 + 1) − π

π
√

a2 + 1
, (23)

with the principal branch chosen for the natural logarithm, and
the branch cut for

√
a2 + 1 chosen as

Re(
√

a2 + 1) � 0, ∀a,

Im(
√

a2 + 1) � 0, for Re(
√

a2 + 1) = 0.
(24)

For the latter case (y = d tan α), the above expressions are still
valid if Re(a+

1,2) = Re(a−
1,2) < 0, otherwise they simply reduce

to (see Appendix C for details)

A+
1,2 = A−

1,2 = 0. (25)

It is rather remarkable that in these two relevant planes,
of most interest to analyze the imaging properties of the
metamaterial slabs, we are able to obtain a closed-form
analytical solution of the field distribution induced by an
arbitrary magnetic source. This result will be used in the
following to highlight the remarkable imaging properties of
ENZ metamaterials with arbitrarily tilted anisotropy axis.

B. Physical interpretation

It is of particular interest to identify the distinct phenomena
involved in the wave interaction with the geometry of Fig. 1 as a
function of the various parameters considered in our analytical
solution in Eqs. (15) and (16). First, we notice that the expo-
nential terms exp(a±

1,2ζ ) account for the dominant resonances
exhibited by the slab, corresponding to pole singularities in the
spectral integral formulation.42 Their localization properties
can be readily related to the slab physical parameters via
Eqs. (17) and (11b).

The terms exp(a±
1,2ζ )He(1)

0 (a±
1,2,η

±
1,2,ζ ) instead account

for the continuous radiation spectrum, corresponding to the
branch-cut contributions in the spectral integral formulation.42

We remark that, unlike the configuration in Refs. 8 and 17,
these contributions are generally non-negligible. Recalling
the definition in Eq. (19), these terms may be physically
interpreted as smoothed versions (via convolution with a
complex-exponential window) of a zeroth-order Hankel func-
tion of the first kind H(1)

0 .

C. Computational aspects

1. Numerical computation of CILHIs

Recalling the expression of the a±
1,2 parameters in Eq. (17),

it is evident that the numerical implementation of our analytical
solution requires in general the calculation of complex-
argument CILHIs of the Hankel type. In Ref. 43, various series
expansions were derived for accurate and efficient computation
of these special functions. In particular, by comparison against
brute-force numerical integration (via adaptive Gauss/Kronrod
quadrature) of the corresponding spectral integrals, efficiency
improvements ranging from one to nearly three orders of
magnitudes were found.

Our numerical implementation is based on a selective
application of the factorial-Neumann and Struve-function
series expansions, following the guidelines of Ref. 43 for
the various parameter ranges. Although a proper numerical
optimization to maximize the calculation efficiency of these
coefficients goes beyond our interest, it is evident that our
closed-form analytical solution may significantly outperform
conventional numerical solvers.

2. Small-argument approximation

Since the application of the metamaterial slab and the focus
of this paper is concentrated on the near-field subwavelength
imaging scenario, with xs � λ0 and x = d, a simple small-
argument (ζ � 1) analytical approximation for the CILHIs
may be conveniently utilized. First, we recall the small-
argument approximation of the zeroth-order Hankel function
of the first kind [cf. Eqs. (9.1.12) and (9.1.13) in Ref. 41],

H(1)
0 (τ ) ∼ 1 +

(
2i

π

)[
ln

(
τ

2

)
+ γ

]
, (26)

where γ denotes the Euler–Mascheroni constant.41 Using this
approximation, it follows that

exp(aζ )
∫ ζ

0
exp(−aτ ) H(1)

0 (τ ) dτ ∼
[

exp(aζ ) − 1

a

]
− 2i

πa
ln

(
ζ

2

)
− 2i {exp(aζ ) [E1 (aζ ) + ln (2a)] + γ }

πa
, (27)

where E1 denotes the exponential integral [cf. Eq. (5.1.1) in Ref. 41] which, recalling the expansion in Eq. (5.1.11) of Ref. 41
and exploiting a (1,1) Padé approximant46 for the power series part, may be conveniently approximated as

E1 (aζ ) ∼ 4aζ

4 + aζ
− γ − ln (aζ ) . (28)
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Recalling Eqs. (19) and (23), we finally obtain the small-argument approximation

exp(aζ )He(1)
0 (a,η,ζ ) ∼ exp(aζ )

[
2i ln(a + √

a2 + 1) − π

π
√

a2 + 1
− 8iaζ

πa(4 + aζ )

]
+ [exp(aζ ) − 1]

{
2i

[
ln

(
ζ

2

) + γ
] + π

}
πa

, (29)

in terms of simple analytical functions. By substituting Eq. (29) in Eq. (16), we obtain

F1,2(ζ,ϕ) ∼ A+
1,2 exp(a+

1,2ζ ) + χ+
1,2

[exp(a+
1,2ζ ) − 1]

{
2i

[
ln

(
ζ

2

) + γ
] + π

}
πa+

1,2

+χ+
1,2 exp(a+

1,2ζ )

[
2i ln(a+

1,2 +
√

(a+
1,2)2 + 1) − π

π

√
(a+

1,2)2 + 1
− 8ia+

1,2ζ

πa+
1,2(4 + a+

1,2ζ )

]
+χ−

1,2

[exp(a−
1,2ζ ) − 1]

{
2i

[
ln

(
ζ

2

) + γ
] + π

}
πa−

1,2

+χ−
1,2 exp(a−

1,2ζ )

[
2i ln(a−

1,2 +
√

(a−
1,2)2 + 1) − π

π

√
(a−

1,2)2 + 1
− 8ia−

1,2ζ

πa−
1,2(4 + a−

1,2ζ )

]
, (30)

which, substituted in Eq. (15), yield the final approximation
for the Green’s function (not given explicitly here for brevity).
Once implemented, this solution may provide a complete
description of the imaging properties of the metamaterial slab,
based on conventional basic functions. Its overall applicability
and accuracy, which is expected to be restricted to small values
of the argument, will be quantitatively assessed in Sec. IV B.

IV. REPRESENTATIVE NUMERICAL RESULTS AND
PHYSICAL INSIGHTS

A. Generalities

In what follows, for certain representative ENZ parameter
configurations, we validate and calibrate the analytical solu-
tions derived in Sec. III against a reference solution obtained
via brute-force numerical quadrature of the spectral integral in
Eq. (6) with the general transmission coefficient in Eq. (A1).
We further discuss the imaging properties of the metamaterial
slab for specific design parameters of interest. Our reference
solution relies on Gaussian-type quadrature rules (cf. Sec. 25.4
in Ref. 41), with the number of nodes refined adaptively so as
to guarantee a four-digit accuracy. It is worth pointing out
that no particular attempt was made to optimize its numerical
implementation, since a careful and thorough assessment
of the computational convenience of CILHI-based solutions
versus numerical spectral integration was already carried out in
Ref. 43 (see also the discussion in Sec. III C1), and is therefore
not the focus of our investigation here.

B. Numerical results and discussion

We start considering an ideal lossless configuration featur-
ing a line source placed at a distance xs = λ0/50 away from
a slab of thickness d = 0.5λ0, and constitutive parameters
ευ = 0, εξ = −2. Figure 3 shows the normalized Green’s
function intensity maps, within and beyond the image plane
x = d, computed by using the reference solution [cf. Eq. (6)],
for values of the optical axis angle α ranging from 0 to
75◦. Similarly to what observed in Ref. 19, the images
are maximally localized at the image plane x = d and are

subject to a lateral displacement (of a quantity yα = d tan α)
with respect to the source position (y = 0), which is in
agreement with the fact that subwavelength details of the
source are effectively transported with small distortion along
the optical axis direction. As it can be observed, increasing
values of the tilt angle α (i.e., of the lateral displacement) are
accompanied by progressively worse localization properties
(note the different color scales of the plots).

Figures 4 and 5 show the intensity profiles along the two
principal cuts, namely, the image plane at the slab interface
(x = d) and the orthogonal plane passing trough the fiducial
image position (yα = d tan α), respectively, comparing the
reference solution [cf. Eq. (6), black-solid curves] with
the CILHI-based analytical solutions in Eqs. (15) and (16)
[with the parameters � and κ1,2 given by Eq. (11)]. Along
these cuts, it was possible to apply the small-argument
approximation and derive Eq. (29). More specifically, both
the “exact” (i.e., numerically computed as in Sec. III C1) and
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3

2

1

0

0.5  1   1.5 0.5  1   1.5 0.5  1   1.5 0.5  1   1.5 0.5  1   1.5 0.5  1   1.5
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FIG. 3. (Color online) Normalized Green’s function intensity
maps (within and beyond the image plane x = d), for a source
located xs = λ0/50 away from a slab of thickness d = 0.5λ0, ευ = 0,
εξ = −2, and the optical axis angle α varying from 0 (a) to 75◦

(f) with step of 15◦, computed via the reference solution (cf. Ref. 6).
Here and henceforth, intensities are normalized with respect to the
peak intensity at the image plane in the absence of the slab, i.e.,
|G(H )

0 (d,0,xs)|2 [cf. Eq. (4)].
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FIG. 4. (Color online) As in Fig. 3, but lateral cuts at the image plane x = d (black solid curves) compared with the “exact” and
small-argument-approximated CILHI-based analytical solutions (red dashed and blue dotted curves, respectively). The magenta dashed-dotted
vertical lines indicate the fiducial positions yα = d tan α of the laterally displaced images.

small-argument-approximated [cf. Eq. (29)] CILHIs are con-
sidered (red-dashed and blue-dotted curves, respectively). The
“exact” CILHI-based solutions are practically indistinguish-
able from the reference solutions [cf. Eq. (6)] on the scale of the
plots, whereas, as expected, the small-argument approximation
breaks down away from the peak. These limitations are
more evident in the orthogonal cuts (see Fig. 5), since the
longitudinal localization is typically poorer. It is important
to stress that, compared to a conventional focusing lens, the
metamaterial slab is able to focus the transverse image well
below the diffraction limit, but it is not very effective in
focusing in the longitudinal plane. Effectively, as shown in
Fig. 5, the subwavelength spot decays away from the slab
with a conventional exponential drop, due to the diffraction
of the high-wavenumber spectral components of the image
transported to the back of the slab.

It is interesting to notice in Figs. 4 and 5 how the small-
argument approximation is sufficient to correctly capture the

essential localization properties of the image, especially in
the transverse direction. In what follows, for quantitative
assessments, we consider two typical figures of merit: the
full-width-at-half-maximum (FWHM) and the (normalized)
peak intensity at the image plane x = d. Figure 6 compares
the FWHM and (normalized) peak intensity, estimated via
the reference solution [cf. Eq. (6), circular markers] and
the small-argument CILHI-based analytical solution (square
markers), as a function of α. Overall, a uniformly good
agreement is observed, with maximum errors <2% in the
FWHM and <0.3% in the peak intensity. Consistently with
the visual impression from Figs. 3 and 4, both observables
deteriorate with increasing values of α. More specifically, over
the range 0 � α � 75◦, the FWHM increases from ∼0.12λ0 to
∼0.35λ0, while the (normalized) peak intensity decreases from
∼3.3 to ∼0.2. To sum up, the ENZ configuration analyzed
in this paper is able to transport, and laterally displace,
subwavelength details of a source from the input to the
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FIG. 5. (Color online) As in Fig. 4, but orthogonal cuts at the fiducial position of the image yα = d tan α.
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FIG. 6. (Color online) Parameters as in Fig. 4. FWHM (empty
markers, left axis) and peak intensity (full markers, right axis) at
the image plane x = d , estimated via the reference solution [cf.
Eq. (6), circular markers] and the small-argument-approximated
CILHI-based analytical solution (square markers), as a function of
the optical axis angle α.

output slab interface, with resolutions as good as a tenth of
a wavelength. However, large lateral displacements result in a
larger degradation of the image resolution and intensity. For
instance, lateral displacements of nearly two wavelengths [cf.
Figs. 3(f)–5(f)] may be attained at the expense of a factor ∼3 in
the resolution and over an order of magnitude in the intensity.

For the same configuration, and a fixed optical axis direction
(α = 0), Fig. 7 shows the two considered figures of merit as a
function of εξ in the hyperbolic-medium regime. As expected,
recalling our discussion at the end of Sec. II A, the figures of
merit improve for larger absolute values of εξ . Conversely, they
strongly deteriorate for εξ → 0. This is also not surprising,
as it is well known that in the isotropic ENZ limit the slab
becomes a highly selective spatial filter.47 Also in these cases,
the agreement between the reference solution [cf. Eq. (6)] and
the small-argument CILHI-based analytical solution is very
good, with same maximum errors as above.

Next, we assess the critical ENZ assumption underlying our
analytical solution. It is well known that in practical implemen-
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FIG. 7. (Color online) As in Fig. 6, but as a function of εξ , for
α = 0. Note the logarithmic scale on the right axis.
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FIG. 8. (Color online) FWHM (empty markers, left axis) and
peak intensity (full markers, right axis) at the image plane x = d ,
estimated via the reference solution [cf. Eq. (6)], for xs = λ0/50, d =
0.5λ0, α = 0, Re(εξ ) = −2, Re(ευ ) = 10−3, as a function of Im(εξ,υ )
(in logarithmic scale). Also shown (as horizontal dashed lines) are
the corresponding estimates from the small-argument-approximated
CILHI-based analytical solution.

tations (e.g., metallodielectric multilayers) the condition ευ =
0 may only be approximatively attained due to the presence of
losses, and in any case limited to one single frequency point.
While it is possible, in principle, to achieve a vanishing real part
(at a given frequency), zeroing the imaginary part is prevented
by unavoidable material losses. Nevertheless, recent studies48

have demonstrated the promising potentials of gain-assisted
nanocomposites for the synthesis of artificial materials with
very small values (∼10−2) of the real and imaginary parts
of ευ . In order to assess the applicability of our proposed
analytical solution to such regime, we consider a more realistic
configuration with, d = 0.5λ0, α = 0, Re(εξ ) = −2, and a
small but nonzero |ευ |. More specifically, we assume Re(ευ) =
10−3, and let the imaginary parts of εξ and ευ vary over several
decades. Figure 8 shows the corresponding FWHM and peak
intensity estimated via the reference solution [cf. Eq. (6)]. As
expected, for asymptotically vanishing losses, they approach
the estimates from our small-argument CILHI-based analytical
solution (shown as horizontal dashed lines), and progressively
depart from them for increased loss levels. In particular, for
Im(εξ,υ) = 10−2, the agreement is still satisfactory, with only a
∼2% error in the FWHM and a ∼3% error in the peak intensity.
For Im(εξ,υ) = 0.05, the errors increase to ∼15% and ∼16%,
respectively, which may still be acceptable. Qualitatively
similar trends where observed for different values of Re(εξ ), as
exemplified in Fig. 9. In this case, pertaining to Re(εξ ) = −5,
the errors in the FWHM and peak intensity are ∼0.4% and
∼1%, respectively, for Im(εξ,υ) = 10−2, and ∼5% and ∼9%,
respectively, for Im(εξ,υ) = 0.05. From the physical point of
view, our results indicate that the imaging properties of the
ENZ anisotropic slabs considered here are quite robust to
losses and frequency variations.

Overall, the above results also indicate that our proposed
analytical solution accurately captures the essential image-
formation properties in the scenario of interest, and it can be
safely applied in low-loss scenarios.
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FIG. 9. (Color online) As in Fig. 8, but for Re(εξ ) = −5. Note
also the logarithmic scale on the right axis.

V. CONCLUSIONS

In this paper, we have presented an analytical study of the
subwavelength imaging properties of uniaxially anisotropic
ENZ metamaterial slabs with tilted optical axis. In par-
ticular, we have derived a closed-form analytical solution
for the 2D Green’s function in terms of special cylindrical
functions. These functions can be efficiently computed via
well-established numerical schemes, yielding computational
savings up to nearly three orders of magnitudes by comparison
with brute-force numerical quadrature of the corresponding
spectral integrals. Moreover, in the near-field parameter range
of interest, they can be conveniently approximated in terms of
simple analytical functions.

Validation and calibration of our results against a
numerical-integration-based reference solution [cf. Eq. (6)]
confirmed the applicability of our solution to subwavelength
imaging scenarios with low-loss constitutive parameters that
are within reach of current (e.g., gain-assisted) technologies.
We have employed this solution to analyze the imaging
properties of anisotropic ENZ metamaterial slabs varying the
design parameters and tilt angle.

Current and future investigations are aimed at exploiting
our proposed parametrization in design procedures and opti-
mization schemes to improve the imaging capabilities of these
devices. Also of interest are possible extensions to account for
spatial-dispersion (nonlocal) effects as well as the to predict
the emission enhancement for quantum sources radiating in
ENZ media.49
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APPENDIX A: PERTAINING TO EQ. (7)

The plane-wave transmission coefficient of the uniaxial
slab described by the permittivity tensor in Eq. (1) is
computed by expanding the field inside the slab in terms of
forward and backward plane waves (with conserved trans-
verse wave vectors), and enforcing the phase-matching and

transverse-field-continuity conditions at the interfaces. For the
assumed transverse-magnetic polarization, via cumbersome
but straightforward algebra, we obtain the general expression

T (ky) = 2 exp(ikx2d)εxxkx

(
ε2
xy − εxxεyy

)
(kx1 − kx2)

U−
1 (ky)U+

2 (ky) − exp[i(kx2 − kx1)d]U+
1 (ky)U−

2 (ky)
,

(A1)

where

εxx = εξ cos2 α + ευ sin2 α, (A2a)

εyy = εξ sin2 α + ευ cos2 α, (A2b)

εxy = (εξ − ευ) sin α cos α (A2c)

represent the Cartesian components of the relative permittivity
tensor in Eq. (1), and

kx1,2 =
−εxyky ∓

√(
εxxεyy − ε2

xy

)(
εxxk

2
0 − k2

y

)
εxx

, (A3)

U±
ς (ky) = ε2

xykx − εxx(εyykx ± kxς ) ∓ εxyky, ς = 1,2.

(A4)

It can readily be verified that the limit ευ → 0 leads to a
0/0 indeterminate form in Eq. (A1). In order to evaluate this
limit, noting from Eq. (A3) that kx1 → kx2, it is expedient
to linearize the exponential function in the denominator of
Eq. (A1), viz.,

T (ky) ≈ 2 exp(ikx2d)εxxkx

(
ε2
xy−εxxεyy

)
(kx1 − kx2)

U−
1 (ky)U+

2 (ky) − [1 + i(kx2 − kx1)d]U+
1 (ky)U−

2 (ky)
.

(A5)

Next, via straightforward McLaurin expansions, we obtain for
the various terms in Eq. (A5):

εxx

(
ε2
xy − εxxεyy

)
(kx1 − kx2)

∼ 2(εξ ευ)
3
2

√
k2

0εξ cos2 α − k2
y + O

(
ε

5
2
υ

)
, (A6)

U−
1 (ky)U+

2 (ky) − U+
1 (ky)U−

2 (ky)

∼ 4(εξ ευ)
3
2 kx

√
k2

0εξ cos2 α − k2
y + O

(
ε

5
2
υ

)
, (A7)

(kx2 − kx1)U+
1 (ky)U−

2 (ky)

∼ 2
√

εξ ε
3
2
υ

(
k2

0εξ cos2 α − k2
y

) 3
2 sec2 α + O

(
ε2
υ

)
, (A8)

with O(· · ·) denoting the Landau symbol. The limit in Eq. (7)
readily follows by substituting Eqs. (A6)–(A8) into Eq. (A5),
neglecting higher-order terms, and simplifying the dominant

term ε
3
2
υ .

APPENDIX B: DERIVATION OF THE GENERAL
SOLUTION IN EQS. (15)–(18)

First, by rewriting the rational part of the integrand in
Eq. (12) as

1

(kx − κ1)(kx − κ2)

= κ1

kx(kx − κ1)(κ1 − κ2)
− κ2

kx(kx − κ2)(κ1 − κ2)
, (B1)
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we obtain [cf. Eq. (15)] a different, generic canonical integral
of the form

F (ζ,ϕ) = κ

∫ ∞

−∞

exp
[
iζ

(
kx

k0
cos ϕ + ky

k0
sin ϕ

)]
kx(kx − κ)

dky (B2)

in the polar coordinates given by Eq. (14). In Ref. 50, closed-
form calculation of spectral integrals of this type was carried
out via rather cumbersome contour-integration techniques. In
what follows, we rely on an alternative, relatively simpler,
differential-equation-based procedure proposed in Ref. 51
(based on the work in Ref. 52). The basic idea is to construct
an inhomogeneous differential equation (in the ζ variable)
satisfied by the integral in Eq. (B2). To this aim, we apply to
Eq. (B2) a second-order differential operator

D2 [F ] (ζ,ϕ) ≡
(

∂2

∂ζ 2
+ β1

∂

∂ζ
+ β0

)
F (ζ,ϕ) (B3a)

=
[
β0 − k2

x cos(2ϕ)

k2
0

− sin2 ϕ − kxky sin(2ϕ)

k2
0

+ iβ1

k0
(kx cos ϕ + ky sin ϕ)

]
F (ζ,ϕ), (B3b)

where β0 and β1 are ϕ-dependent coefficients and Eq. (B3b)
follows from straightforward differentiation under the integral
sign in Eq. (B2). Particularly expedient is to choose the
coefficients as

β0 = sin2 ϕ − κ2

k2
0

, β1 = −2iκ cos ϕ

k0
, (B4)

which allows recasting Eq. (B3) in a simplified form:

D2[F ](ζ,ϕ) = [κ − kx cos(2ϕ) − ky sin(2ϕ)](kx − κ)

k2
0

F (ζ,ϕ)

(B5a)

= κ[κ − kx cos(2ϕ) − ky sin(2ϕ)]

k2
0

×
∫ ∞

−∞

exp
[
iζ

(
kx

k0
cos ϕ + ky

k0
sin ϕ

)]
kx

dky.

(B5b)

Recalling the spectral-integral representation of the zeroth-
order Hankel function of the first kind [cf. Eq. (4b)],

H(1)
0 (ζ ) =

∫ ∞

−∞

exp
[
iζ

(
kx

k0
cos ϕ + ky

k0
sin ϕ

)]
πkx

dky, (B6)

the right-hand side of Eq. (B5) can be readily calculated,
yielding

D2[F ](ζ,ϕ) =
(

πκ2

k2
0

)
H(1)

0 (ζ ) +
(

iπκ cos ϕ

k0

)
dH(1)

0 (ζ )

dζ

≡ F0(ζ,ϕ). (B7)

We have thus demonstrated that the canonical integral in
Eq. (B2) may be alternatively calculated by solving the
second-order, inhomogeneous differential equation in Eq. (B7)
[with D2 given in Eq. (B3a) with Eq. (B4)]. This can be
accomplished in a systematic fashion by applying the method

of variation of parameters,53 yielding

F (ζ,ϕ) = A+ exp(a+ζ ) + A− exp(a−ζ )

+Q+(ζ,ϕ) + Q−(ζ,ϕ), (B8)

where A+ and A− are integration constants to be determined
(see Appendix C below),

a± = −β1

2
±

√
β2

1

4
− β0 (B9)

are the roots of the characteristic equation, and

Q±(ζ,ϕ) = 1

(a± − a∓)

∫ ζ

η±
exp[a±(ζ − τ )]F0(τ,ϕ)dτ

(B10a)

= iπκ cos ϕ

k0(a± − a∓)
H(1)

0 (ζ ) +
[
πκ(κ + ik0a

± cos ϕ)

k2
0(a± − a∓)

]

× exp(a±ζ )He(1)
0 (a±,η±,ζ ) (B10b)

represents the particular solution, with the second equality
following from Eq. (B7) [recalling Eq. (19)].

The general solution in Eqs. (15)–(18) immediately follows,
by recalling Eq. (B1) and rearranging terms.54

APPENDIX C: CALCULATION OF THE INTEGRATION
CONSTANTS IN EQ. (21)

The ϕ-dependent integration constants A±
1,2 in Eq. (21) can

be determined by enforcing the proper boundary conditions
(usually, at ζ = 0 and for ζ → ∞). The general calculation
procedure is rather involved, and depends on the sign of the
real parts of the a±

1,2 parameters in Eq. (17). For instance,
if these real parts are all negative, the conditions for ζ →
∞ cannot be exploited, and one is led to enforce only
the boundary conditions at ζ = 0. However, the calculation
becomes particularly cumbersome, as the functions F1,2 in
Eq. (16) are nondifferentiable at ζ = 0. Nevertheless, for the
near-field scenario of interest here, the calculation becomes
particularly simple in the two principal planes of the image,
namely x = d and y = d tan α, which are the most interesting
in order to assess the transverse and longitudinal localization.

More specifically, assuming xs = 0 and x = d, we note
that, from Eq. (17),

Re(a−
1,2) = −Re(a+

1,2) > 0. (C1)

Accordingly, Eq. (21a) readily follows by enforcing the
regularity-at-infinity conditions

lim
ζ→∞

F1,2(ζ,ϕ) = 0. (C2)

The remaining integration constants are computed by enforc-
ing the conditions at ζ = 0, viz.,

F1,2(0,ϕ) = A+
1,2 + χ+

1,2He(1)
0 (a+

1,2,η
+
1,2,0)

+χ−
1,2He(1)

0 (a−
1,2,η

−
1,2,0) (C3a)

= κ1,2

∫ ∞

−∞

1

kx(kx − κ1,2)
dky = C1,2, (C3b)

where the second equality follows from Eq. (B2), and the
arising spectral integral admits the closed-form analytical
solution given in Eq. (22). The above derivations also hold
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approximately for source positions very close to the input slab
interface (xs � λ0).

For observations along orthogonal planes passing through
the fiducial image position (yd = 0, i.e., y = tan α), we note
from Eq. (17) that

a−
1,2 = a+

1,2, (C4)

which basically means that there are only two effective inte-
gration constants to be determined. Accordingly, if Re(a±

1,2) <

0, we can arbitrarily set A−
1,2 = 0 and proceed as above

[cf. Eq. (C3)], so that the results in Eq. (21) hold for
this case too. Otherwise, if Re(a±

1,2) � 0, then the results
in Eq. (25) readily follow from the regularity-at-infinity
conditions.
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