98 research outputs found

    Higher Order Terms in the Melvin-Morton Expansion of the Colored Jones Polynomial

    Full text link
    We formulate a conjecture about the structure of `upper lines' in the expansion of the colored Jones polynomial of a knot in powers of (q-1). The Melvin-Morton conjecture states that the bottom line in this expansion is equal to the inverse Alexander polynomial of the knot. We conjecture that the upper lines are rational functions whose denominators are powers of the Alexander polynomial. We prove this conjecture for torus knots and give experimental evidence that it is also true for other types of knots.Comment: 21 pages, 1 figure, LaTe

    A Rational Logarithmic Conformal Field Theory

    Full text link
    We analyse the fusion of representations of the triplet algebra, the maximally extended symmetry algebra of the Virasoro algebra at c=-2. It is shown that there exists a finite number of representations which are closed under fusion. These include all irreducible representations, but also some reducible representations which appear as indecomposable components in fusion products.Comment: 10 pages, LaTe

    Topological quantum field theory and four-manifolds

    Get PDF
    I review some recent results on four-manifold invariants which have been obtained in the context of topological quantum field theory. I focus on three different aspects: (a) the computation of correlation functions, which give explicit results for the Donaldson invariants of non-simply connected manifolds, and for generalizations of these invariants to the gauge group SU(N); (b) compactifications to lower dimensions, and relations with three-manifold topology and with intersection theory on the moduli space of flat connections on Riemann surfaces; (c) four-dimensional theories with critical behavior, which give some remarkable constraints on Seiberg-Witten invariants and new results on the geography of four-manifolds.Comment: 10 pages, LaTeX. Talk given at the 3rd ECM, Barcelona, July 2000; references adde

    On Integrable Quantum Group Invariant Antiferromagnets

    Get PDF
    A new open spin chain hamiltonian is introduced. It is both integrable (Sklyanin`s type KK matrices are used to achieve this) and invariant under Uϵ(sl(2)){\cal U}_{\epsilon}(sl(2)) transformations in nilpotent irreps for ϵ3=1\epsilon^3=1. Some considerations on the centralizer of nilpotent representations and its representation theory are also presented.Comment: IFF-5/92, 13 pages, LaTex file, 8 figures available from author

    A Local Logarithmic Conformal Field Theory

    Get PDF
    The local logarithmic conformal field theory corresponding to the triplet algebra at c=-2 is constructed. The constraints of locality and crossing symmetry are explored in detail, and a consistent set of amplitudes is found. The spectrum of the corresponding theory is determined, and it is found to be modular invariant. This provides the first construction of a non-chiral rational logarithmic conformal field theory, establishing that such models can indeed define bona fide conformal field theories.Comment: 29 pages, LaTeX, minor changes, reference adde

    The conformal current algebra on supergroups with applications to the spectrum and integrability

    Full text link
    We compute the algebra of left and right currents for a principal chiral model with arbitrary Wess-Zumino term on supergroups with zero Killing form. We define primary fields for the current algebra that match the affine primaries at the Wess-Zumino-Witten points. The Maurer-Cartan equation together with current conservation tightly constrain the current-current and current-primary operator product expansions. The Hilbert space of the theory is generated by acting with the currents on primary fields. We compute the conformal dimensions of a subset of these states in the large radius limit. The current algebra is shown to be consistent with the quantum integrability of these models to several orders in perturbation theory.Comment: 45 pages. Minor correction

    Matrix Model as a Mirror of Chern-Simons Theory

    Full text link
    Using mirror symmetry, we show that Chern-Simons theory on certain manifolds such as lens spaces reduces to a novel class of Hermitian matrix models, where the measure is that of unitary matrix models. We show that this agrees with the more conventional canonical quantization of Chern-Simons theory. Moreover, large N dualities in this context lead to computation of all genus A-model topological amplitudes on toric Calabi-Yau manifolds in terms of matrix integrals. In the context of type IIA superstring compactifications on these Calabi-Yau manifolds with wrapped D6 branes (which are dual to M-theory on G2 manifolds) this leads to engineering and solving F-terms for N=1 supersymmetric gauge theories with superpotentials involving certain multi-trace operators.Comment: harvmac, 54 pages, 13 figure

    Remodeling the B-model

    Full text link
    We propose a complete, new formalism to compute unambiguously B-model open and closed amplitudes in local Calabi-Yau geometries, including the mirrors of toric manifolds. The formalism is based on the recursive solution of matrix models recently proposed by Eynard and Orantin. The resulting amplitudes are non-perturbative in both the closed and the open moduli. The formalism can then be used to study stringy phase transitions in the open/closed moduli space. At large radius, this formalism may be seen as a mirror formalism to the topological vertex, but it is also valid in other phases in the moduli space. We develop the formalism in general and provide an extensive number of checks, including a test at the orbifold point of A_p fibrations, where the amplitudes compute the 't Hooft expansion of Wilson loops in lens spaces. We also use our formalism to predict the disk amplitude for the orbifold C^3/Z_3.Comment: 83 pages, 9 figure

    Classical BV theories on manifolds with boundary

    Full text link
    In this paper we extend the classical BV framework to gauge theories on spacetime manifolds with boundary. In particular, we connect the BV construction in the bulk with the BFV construction on the boundary and we develop its extension to strata of higher codimension in the case of manifolds with corners. We present several examples including electrodynamics, Yang-Mills theory and topological field theories coming from the AKSZ construction, in particular, the Chern-Simons theory, the BFBF theory, and the Poisson sigma model. This paper is the first step towards developing the perturbative quantization of such theories on manifolds with boundary in a way consistent with gluing.Comment: The second version has many typos corrected, references added. Some typos are probably still there, in particular, signs in examples. In the third version more typoes are corrected and the exposition is slightly change

    A unified Witten-Reshetikhin-Turaev invariant for integral homology spheres

    Full text link
    We construct an invariant J_M of integral homology spheres M with values in a completion \hat{Z[q]} of the polynomial ring Z[q] such that the evaluation at each root of unity \zeta gives the the SU(2) Witten-Reshetikhin-Turaev invariant \tau_\zeta(M) of M at \zeta. Thus J_M unifies all the SU(2) Witten-Reshetikhin-Turaev invariants of M. As a consequence, \tau_\zeta(M) is an algebraic integer. Moreover, it follows that \tau_\zeta(M) as a function on \zeta behaves like an ``analytic function'' defined on the set of roots of unity. That is, the \tau_\zeta(M) for all roots of unity are determined by a "Taylor expansion" at any root of unity, and also by the values at infinitely many roots of unity of prime power orders. In particular, \tau_\zeta(M) for all roots of unity are determined by the Ohtsuki series, which can be regarded as the Taylor expansion at q=1.Comment: 66 pages, 8 figure
    corecore