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Abstract

A new open spin chain hamiltonian is introduced. It is both integrable

(Sklyanin’s type K matrices are used to achieve this) and invariant under

Uǫ(sl(2)) transformations in nilpotent irreps for ǫ
3 = 1. Some considera-

tions on the centralizer of nilpotent representations and its representation

theory are also presented.
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The most direct way to get into the physics associated with quantum groups

is certainly the study of quantum mechanical systems possesing a quantum

group symmetry. Some examples of this kind are already known in the context

of one dimensional spin chains [1]. The simplest one is the XXZ spin–1/2 chain

with boundary conditions:

H =

N−1∑

i=1

σx
i σx

i+1 + σy
i σy

i+1 +
q + q−1

2
σz

i σz
i+1 +

q − q−1

2
(σz

1 − σz
N ) (1)

which is invariant under Uq(sl(2)) transformations. The integrable version of the

spin one Heisenberg model with non vanishing anisotropy is the Zamolodchikov–

Fateev hamiltonian [2]:

HZF =

N−1∑

i=1

HZF
i,i+1

=
N−1∑

i=1

Sx
i Sx

i+1 + Sy
i Sy
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2
Sz

i Sz
i+1 − (Sx

i Sx
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i Sy
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2

−
q2 + q−2

2
(Sz

i Sz
i+1)

2 + (1 − q − q−1)[(Sx
i Sx

i+1 + Sy
i Sy

i+1)S
z
i Sz

i+1+ ↔]

+(
q2 + q−2

2
− 1)((Sz

i )2 + (Sz
i+1)

2) (2)

The hamiltonian HZF
i,i+1 is given by the logarithmic derivative of the spin one

R–matrix R(s=1)(u) of the affine Hopf algebra Uq(ŝl(2)) . In order to make the

ZF hamiltonian invariant under global Uq(sl(2)) transformations the following

boundary term should be added

H(B) =
q2 + q−2

2
(Sz

N − Sz
1) (3)

Integrability in a box requires that the Sklyanin reflection operators K±(u),

which describe the scattering with the wall obey the relations [3]:

R12(u−v)
1

K− (u)R12(u+v)
2

K− (v) =
2

K− (u)R12(u+v)
1

K− (u)R12(u−v) (4)
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For the quantum group invariant hamiltonian HZF +HB it is not hard to prove

[4] that:

[HZF + HB, t(u)] = 0 (5)

where the box transfer matrix t(u) is defined by:

t(u) = Tr(K+(u)T (u)K−(u)T−1(−u)) (6)

with K− satisfying (4) for R the spin one R–matrix of Uq(ŝl(2)) and K+(u) =

K−(−u− η), q = exp η. From (5) it follows the integrability of the hamiltonian

HZF +HB. The monodromy matrix T (u) in (6) is the one defined by the s = 1

quantum R matrix of Uq(ŝl(2)).

In reference [5] a one parameter family of integrable deformations of (2) was

defined for q = ǫ, ǫ3 = 1 :

H(λ) = 2(ǫ − ǫ−1)

N∑

i=1

λǫ + λ−1ǫ−1

2
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i Sx
i+1 + Sy

i Sy
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2 +
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+(
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2
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i Sy
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z
i Sz

i+1+ ↔] −
3

2
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i )2 + (Sz
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−
λǫ − λ−1ǫ−1

2(ǫ − ǫ−1)
(Sx

i Sx
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i Sy
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z
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i+1) +
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2(ǫ − ǫ−1)
(Sz

i + Sz
i+1)

≡

N∑

i=1

H(λ)i,i+1

ω(λ) =
√

(λ − λ−1)(λǫ−1 − λ−1ǫ)

The hamiltonian H(λ)i,i+1 is (up to a constant factor) the logarithmic derivative

of the quantum R–matrix R(λ)(u) which intertwines nilpotent representations of

Uq(ŝl(2)) for q = ǫ [5, 6]. Let us recall that nilpotent representations of Uǫ(ŝl(2))

(ǫ3 = 1) are three–dimensional irreducible representations transforming under
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the central Hopf subalgebra as: E3 = F 3 = 0, K3 = λ3, with λ a generic

complex number. For λ = ǫ2, which corresponds to the spin one representation,

H(λ) coincides with 2(ǫ − ǫ−1)HZF for q = ǫ.

The problem we want to address in this lecture is the definition of an inte-

grable and quantum group invariant version of (7). Quantum group invariance

is easily obtained adding to (7) the boundary term:

HB(λ) = ω2(Sz
1 − Sz

N ) (8)

The hamiltonian H(λ)+HB(λ) coincides, for λ = ǫ2, with 2(ǫ−ǫ−1)(HZF +HB),

which is already a good indication concerning integrability. However, to attain

it, we need to check for H(λ) + HB(λ) the equivalent to equation (5) with K

now being a solution to (4) for R the quantum nilpotent Rλ(u)–matrix. The

K–matrices for the nilpotent Rλ(u)–matrix are:

K−(u) =
1

sinhα− sinh(α− − η)

× diag(sinh(u + α−) sinh(u + α− − η),− sinh(u − α−) sinh(u + α− − η),

sinh(u − α−) sinh(u − α− + η))

K+(u) = diag(sinh(u + η − α+) sinh(u − α+ − η), (9)

− sinh(u + η + α+) sinh(u − α+ − η), sinh(u + α+) sinh(u + α+ + η))

with α± free parameters and η = 2πi/3. Note that these matrices possess

precisely the same form as those used in reference [4] to prove the integrability of

the Zamolodchikov–Fateev spin one chain with boundary terms. Using these K

matrices we derive for H(λ)+HB(λ) the integrability condition (5) by showing

that H(λ)+HB(λ) is proportional to the second derivative, at the point u = 0,

of the box transfer matrix t(u), for α± = ∞. Notice the diference with the ZF

case where the hamiltonian is given by the first logarithmic derivative of t(u).
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The reasons are that in our case, as it can be seen from (9), t(0) = TrK+(0)

becomes zero, and that Tr(
0

K+ (0)H(λ)N0) ∝
N
1.

The nice thing about a quantum group invariant hamiltonian is that most

of the properties of the spectrum can be directly derived from representation

theory. So for instance, for the hamiltonian (1) we know that each energy

eigenvalue is associated with a given spin–j irrep of Uq(sl(2)) and that it would

be (2j+1) times degenerate. The different irreps that can appear in the spectrum

are the ones obtained by decomposing
N⊗

V 1/2. Moreover the different hwv’s

transforming in the same representation j will define irreducible representations

of the centralizer of Uq(sl(2)), which for spin 1/2 is given by the Hecke algebra.

In the massless phase (|q| = 1), the previous results provide, together with the

systematic use of the finite size technology [7], the basis for the quantum group

interpretation of conformal field theories [8]. A similar study can now be done

for the hamiltonian H(λ) + HB(λ) with the new features being associated to

the peculiarities of the representation theory at roots of unit.

In what follows we will concentrate our analysis on the structure of the

centralizer for nilpotent representations of Uǫ(sl(2)). Given a nilpotent repre-

sentation V λ we define the centralizer Cλ
N (ǫ) as the algebra of endomorphisms

g :
N⊗

V λ →
N⊗

V λ commuting with the quantum group action. To get the gen-

erators of Cλ
N (ǫ) we first define the “braiding limit” of the quantum R–matrix

Rλλ(u) of the affine Hopf algebra Uǫ(ŝl(2)) as follows:

Rλ
± = lim

u→±∞
R(λ,λ)(u)

r′

1
r′

2

r1r2
eu(r1−r′

2
) (10)

Elements in Cλ
N (ǫ) are then generated by

g±i = 1 ⊗ · · · ⊗ (Rλ
±)i,i+1 ⊗ · · · ⊗ 1 i = 1, . . . , N − 1 (11)

Based on the spectral decomposition of Rλ
± we will assume that the set of
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generators gi is complete. In order to get some insight into the structure of

the centralizer we will first consider the case ǫ4 = 1. In this case the nilpotent

representations are two–dimensional and the “braiding limit” R matrix is given

by:

Rλ =




λ

λ − λ−1 1

1 0

−λ−1




(12)

= σ+ ⊗ σ− + σ− ⊗ σ+ +
1

2
λ−1(σz ⊗ 1) +

1

2
λ(1 ⊗ σz) +

λ − λ−1

2
1⊗ 1

This R matrix has two eigenvalues, λ and −λ−1. The generators gi satisfy the

Hecke relation:

g2
i = (λ − λ−1)gi + 1 (13)

This means that the centralizer Cλ
N (ǫ) in the case where ǫ = eπi/2 gives us a

representation of the Hecke algebra HN (λ2). It is well known that for generic q

the irreducible representations of HN (q) are in one to one correspondence with

irreps of SN , see figure 1. So we may ask which representations we get from the

centralizer Cλ
N (ǫ). At this point it is worthwhile to recall that the centralizer

C
1/2
N (q) for the spin 1/2 representation of Uq(sl(2)) is the quotient of a Hecke

algebra HN (q) by the relation

gigi+1gi + gigi+1 + gi+1gi + gi + gi+1 + 1 = 0 (14)

which in turn is equivalent to reducing the allowed Young tableaux to those

with at most two rows.

In this case the R1/2 matrix which intertwines two spin 1/2 irreducible rep-
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Figure 1:

resentations of Uq(sl(2)) is given by:

R1/2 =




q

0 q1/2

q1/2 q − 1

q




(15)

This R–matrix has also two eigenvalues, −1 and q, but the main difference

with respect to the R–matrix (12) is that in this case the multiplicities of the

eigenvalues are 2 and 2, while for (12) they were 1 and 3. The latter fact can be

understood from the decomposition rule 1
2 ⊗ 1

2 = 0 ⊕ 1 (irrep 0 has dimension

1 and irrep 1 is three–dimensional). More generally we see that condition (14)

imposes a one to one relation between the irreps of the centralizer C
1/2
N (q) and

the decomposition into irreps of Uq(sl(2)) of
N⊗

V 1/2. All this means that the

Brauer–Weyl theory also applies to the spin 1/2 representation of Uq(sl(2)).

For the centralizer Cλ
N (ǫ) we now try to follow the same steps, namely to see

which are the allowed Young diagrams in figure 1 according to the decomposition

rules of nilpotent irreps. It was shown in [9, 10] that the decomposition rules of
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nilpotent irreps for generic values of λ are given by:

λ ⊗ λ =

N ′
−1⊕

i=0

λ2ǫ−2i (16)

where ǫN = 1 (N ′ = N for N odd and N ′ = N/2 for N even). In the case of

ǫ = eiπ/2 equation (16) explains the multiplicities (2,2) of the eigenvalues of the

Rλ matrix (12), since λ⊗λ = λ2 ⊕ (−λ2) and both λ2 and −λ2 have dimension

2. Moreover the generators gi constructed out from Rλ satisfy instead of the

relation (14) the following one:

e−i e−i+2e
+
i+1e

+
i e+

i+2 = e−i e−i+2e
−

i+1e
+
i e+

i+2 = 0 (17)

e±i ≡
1 ± λ±1Rλ

1 + λ±2

which implies that the allowed Young diagrams, in the nilpotent case, are those

of “corner” type:

(18)

The Bratelli diagram describing the centralizer Cλ
N (ǫ = eiπ/2) is that in figure

2. We notice that the Young diagrams of the type (18) are precisely the only

ones that contribute to the Alexander–Conway polynomial as shown by Jones in

[11]. We would like also to mention that the R–matrix (12) coincides with the

intertwiner R matrix for the fundamental representation of Uq(sl(1, 1)) (with

q replaced by λ), which was used in reference [12] in order to construct the

Alexander polynomial. It has also been found in [13] in the context of boson
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Figure 2:

Figure 3:

representations of Uq(sl(2)) . All this seems to indicate alternative descriptions

of the nilpotent irreps of Uǫ(sl(2)) for ǫ = eiπ/2.

Coming back to our problem, we can now compare the Bratelli in figure 2

with the one we derive from the decomposition rule (16) in the case of ǫ = eiπ/2,

shown in figure 3. It is then clear that the diagrams in figures 2 and 3 can be

related under some identifications, as in figure 4. We now face two posibilities,

either

• the set of generators gi given by (11) is not complet in the sense that the

centralizer Cλ
N (ǫ) is bigger, or

• the centralizer Cλ
N (ǫ) is nothing but the one generated by the gi’s with

Bratelli given by that in figure 2 and then the Brauer–Weyl theory is not

working in the standard way for nilpotent representations.
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Figure 4:

Figure 5:

We believe that the correct possibility is the last one and we shall present

computational evidence for this.

We shall consider the next non–trivial case, ǫ3 = 1; the Bratelli diagram for

the centralizer is given in figure 5. Let us compare for instance level 3 of figure

5 with the decomposition V λ ⊗ V λ ⊗ V λ depicted in figure 6. The basis of V λ

is {ei}
2
i=0 and M(er1

⊗ er2
⊗ er3

) = r1 + r2 + r3. In the figure each dot stands

for one of the linearly independent states for each value of M . Dots linked by

vertical lines are connected by the action of the quantum group generators on

the space V λ ⊗ V λ ⊗ V λ, and so they have the same energy eigenvalue. They

also share the same eigenvalue of the quantum group generator ∆(3)(K), which

is also given in the figure. We realize that the different irreps appearing in figure
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Figure 6:

5 are one to one related with sets of irreps in figure 6 possessing the same value

of M . In fact it can be explicitly checked that the “braiding” transformations

gi defined by (11) close in the subspace defined by the same value of M . From

this we can conclude that if Cλ
N (ǫ) is generated by the gi’s then Brauer–Weyl

theory can not be directly applied to the case of nilpotent irreps. Certainly

this result doesn’t rule out the possibility of additional generators; however the

explicit analysis of the spectrum of the hamiltonian H(λ) + HB(λ), presented

in the first part of this lecture, seems to indicate that this is not the case.

For ǫ3 = 1 and a chain of 3 sites the dependences on λ of the energy eigen-

values E1, . . . , E9 (see figure 6) of H(λ)+HB(λ) are given in figure 7. By direct

inspection of this figure we see that the energy eigenvalues correponding to the

same eigenvalue of M have a similar behaviour. It is worth mentioning that

the Bratelli diagrams in figures 2 and 5 can be derived from a modification of

the decomposition rule (16). Indeed if we supplement the irrep λ with a new
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Figure 7:

quantum number n ∈ N, and considering the fusion rule

(λ1, n1) ⊗ (λ2, n2) =
N ′

−1⊕

r=0

(λ1λ2ǫ
−2r, n1 + n2 + r) (19)

we then obtain for N ′ = 2 and 3 the Bratellis of figures 2 and 5 respectively.

This new quantum number n is quite likely the Casimir of an algebra whose

representations are identical to the nilpotent irreps of Uǫ(sl(2)). This is indeed

the case of N ′ = 2 and ∞, where this algebra is Uq(gl(1, 1)) [14] and U(h4) [15]

respectively.

Summarizing the content of this lecture:

1. We have obtained an integrable quantum group invariant spin chain hamil-

tonian for nilpotent representations of Uq(sl(2)) at roots of unit.

2. We have defined the centralizer for nilpotent representations Cλ
N (ǫ) and

studied its representation theory. It turns out that the irreps of the cen-

tralizer generated by the gi’s in equation (11) are one to one related (in

the case ǫ4 = 1) to irreps of SN characterized by “corner” type Young
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diagrams.

Many questions remain open. Among them it would be interesting to provide

a proof that Cλ
N (ǫ) is in fact generated by the “braiding” limit (10) of the

quantum R–matrix Rλλ(u), and generalize to this case the Brauer–Weyl theory.

From a more speculative point of view the situation concerning the centralizer

we are facing here strongly recalls the existence in CFT of extensions of chiral

algebras [16].

A more detalied presentation of the content of this lecture is at present in

preparation [17].
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[6] A. Berkovich, C. Gómez and G. Sierra, “On a new class of integrable mod-

els”, to appear in Intern. Jour. Mod. Phys. A.
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