398 research outputs found

    Pre-stack full waveform inversion of ultra-high-frequency marine seismic reflection data

    Get PDF
    The full waveform inversion (FWI) of seismic reflection data aims to reconstruct a detailed physical properties model of the subsurface, fitting both the amplitude and the traveltime of the reflections generated at physical discontinuities in the propagation medium. Unlike reservoir-scale seismic exploration, where seismic inversion is a widely adopted remote characterization tool, ultrahigh-frequency (UHF, 0.2–4.0 kHz) multichannel marine reflection seismology is still most often limited to a qualitative interpretation of the reflections’ architecture. Here we propose an elastic FWI methodology, custom-tailored for pre-stack UHF marine data in vertically heterogeneous media to obtain a decimetric-scale distribution of P-impedance, density and Poisson’s ratio within the shallow subseabed sediments. We address the deterministic multiparameter inversion in a sequential fashion. The complex trace instantaneous phase is first inverted for the P-wave velocity to make up for the lack of low frequency in the data and reduce the nonlinearity of the problem. This is followed by a short-offset P-impedance optimization and a further step of full offset range Poisson’s ratio inversion. Provided that the seismogram contains wide reflection angles (>40°), we show that it is possible to invert for density and decompose a posteriori the relative contribution of P-wave velocity and density to the P-impedance. A broad range of synthetic tests is used to prove the potential of the methodology and highlights sensitivity issues specific to UHF seismic. An example application to real data is also presented. In the real case, trace normalization is applied to minimize the systematic error deriving from an inaccurate source wavelet estimation. The inverted model for the top 15 m of the subseabed agrees with the local lithological information and core-log data. Thus, we can obtain a detailed remote characterization of the shallow sediments using a multichannel sub-bottom profiler within a reasonable computing cost and with minimal pre-processing. This has the potential to reduce the need of extensive geotechnical coring campaigns

    Soil structure and bypass flwo processes in a Vertsol under sprinkler and drip irrigation.

    Get PDF
    In this paper morphological and physical characteristics, as well as flow behaviour of a Mediterranean Vertisol under the influence of two different irrigation systems currently used for irrigation, i.e. drip and sprinkler systems, were compared. No differences in soil texture, compaction and in potential cracking were found on cores from the two fields. However, field application of methylene blue showed the presence of continuous macropores, penetrating up to depths of 20-25 cm from the soil surface, in the field where the drip system was in use (field 1). This was considered to be the pre-existing soil structure. Instead, macropores terminating at a depth ranging between 5 and 10 cm from the soil surface were observed in the sprinkler irrigated field (field 2). The same difference in terms of macropores' continuity was also observed on soil cores sampled from the two irrigated fields. The higher raindrop impact and the non-point water application involved in the sprinkler irrigation system were assumed to have determined, during several years, the different depth of penetration of the macropores in the two fields. A different hydraulic behaviour was evidenced by laboratory measurement of bypass flow on soil cores taken from the two fields. Specifically, higher values of the saturated hydraulic conductivity were found in the cores from the drip irrigated field compared to those sampled in the sprinkler field. In addition no bypass flow was measured in the columns under the sprinkler field, while high rates and amounts of bypass flow were obtained in the cores taken from the drip irrigated field. The different hydraulic behaviour observed in the cores taken from the drip and from the sprinkler irrigated field was in agreement with the difference in terms of macropores' continuity between the two fields. Being bypass flow a mechanism inducing leaching of solutes, results of this investigation suggest that irrigation systems affecting soil structure, and altering macropores' continuity, should be avoided in clay soils. (c) 2006 Published by Elsevier B.

    Modelli di bilancio agro-idrologico per la previsione dello stress idrico di colture arboree mediterranee

    Get PDF
    Il contributo si propone di dimostrare come l‟uso della modellistica agro-idrologica possa consentire una corretta previsione delle dinamiche di stress idrico di due importanti colture arboree Mediterranee (olivo e agrume), caratterizzate da una diversa risposta eco-fisiologica a condizioni di deficit idrico del suolo. In particolare viene analizzata in dettaglio la tematica della modellizzazione della risposta eco-fisiologica delle due colture e viene affrontata la questione relativa all‟implementazione delle funzioni di stress all‟interno dei modelli di bilancio agro-idrologico di tipo a serbatoio, in modo da simulare l‟effettivo stato idrico della pianta. Con riferimento alle colture esaminate, è nello specifico approfondita la schematizzazione della funzione di stress attraverso l‟analisi di lunghe serie di dati acquisiti nel corso di sperimentazione in campo, relative allo stato idrico del suolo (contenuti idrici volumetrici) e della pianta (potenziali idrici xilematici e flussi traspirativi). È infine discussa l‟applicabilità del modello semplificato descritto nel quaderno FAO n. 56 (Allen et al., 1998) per la predizione delle dinamiche di stress idrico delle colture ed è approfondita l‟importanza che riveste una specifica schematizzazione della funzione di stress idrico nel miglioramento delle performance del modello.The contribute aims to demonstrate how agro-hydrological models are able to predict the water stress dynamics of two important Mediterranean arboreal crops, i.e. olive and citrus, characterized by different eco-physiological water stress response to soil water deficit conditions. In particular, the topic related to the crop water stress function and its implementation into agro-hydrological bucket models is analyzed in order to improve the estimations of actual crop water status. With reference to the examined crops, the proposed schematization of the water stress functions is based on long time series of field measurements of soil (volumetric water contents) and plant (xylem water potentials and transpiration fluxes) water status. The applicability of the bucket model proposed by FAO (Allen et al., 1998) to predict the crop water stress dynamics is also discussed in order to emphasize the importance of a specific schematization of the stress function to improve the model's performance

    Salt intake induces epithelial-to-mesenchymal transition of the peritoneal membrane in rats

    Get PDF
    Methods. Twenty-eight Wistar rats were randomized to a normal salt (NS) or a high salt (HS) intake. NS and HS rats had free access to tap water or NaCl 2% as drinking water, respectively. After 2 weeks, samples of peritoneum were taken, and TGF-beta(1), Interleukin 6 (IL-6) and vascular endothelial growth factor (VEGF) mRNA expression were quantified with qRT-PCR. Fibrosis and submesothelial PM thickness were scored. EMT was evaluated using fluorescence staining with cytokeratin and alpha smooth muscle actin (alpha-SMA). Results. Dietary salt intake caused peritoneal fibrosis and thickening of the submesothelial layer and induced EMT as identified by colocalization of cytokeratin and alpha-SMA in cells present in the submesothelial layer. Peritoneal TGF-beta(1) and IL-6 mRNA expression were upregulated in the HS group. Conclusion. High dietary salt intake induces EMT and peritoneal fibrosis, a process coinciding with upregulation of TGF-beta 1

    Structural and electrical analysis of the atomic layer deposition of HfO2/n-In0.53Ga0.47As capacitors with and without an Al2O3 interface control layer

    Get PDF
    High mobility III-V substrates with high-k oxides are required for device scaling without loss of channel mobility. Interest has focused on the self-cleaning effect on selected III-V substrates during atomic layer deposition of Al2O3. A thin (similar to 1 nm) Al2O3 interface control layer is deposited on In0.53Ga0.47As prior to HfO2 growth, providing the benefit of self-cleaning and improving the interface quality by reducing interface state defect densities by similar to 50% while maintaining scaling trends. Significant reductions in leakage current density and increased breakdown voltage are found, indicative of a band structure improvement due to the reduction/removal of the In0.53Ga0.47As native oxides. (C) 2010 American Institute of Physics. (doi: 10.1063/1.3473773

    Improvement of FAO-56 Model to Estimate Transpiration Fluxes of Drought Tolerant Crops under Soil Water Deficit: Application for Olive Groves

    Get PDF
    Agro-hydrological models are considered an economic and simple tool for quantifying crop water requirements. In the last two decades, agro-hydrological physically based models have been developed to simulate mass and energy exchange processes in the soil-plant-atmosphere system. Although very reliable, because of the high number of required variables, simplified models have been proposed to quantify crop water consumes. The main aim of this paper is to propose an amendment of the Food and Agricultural Organization (FAO) of the United Nations FAO-56 spreadsheet program to introduce a more realistic shape of the stress function, valid for mature olive orchards (Olea europaea L.). The modified model is successively validated by means of the comparison between measured and simulated soil water contents and actual transpiration fluxes. These outputs are finally compared with those obtained with the original version of the model. Experiments also allowed assessing the ability of simulated crop water stress coefficients to explain the actual water stress conditions evaluated on the basis of measured relative transpirations and midday stem water potentials. The results show that the modified model significantly improves the estimation of actual crop transpiration fluxes and soil water contents under soil water deficit conditions, according to the RMSEs associated with the revised model, resulting in significantly higher than the corresponding values obtained with the original version

    Development and Validation of a New Calibration Model for Diviner 2000® Probe Based on Soil Physical Attributes

    Get PDF
    This study aimed to develop a new model, valid for soil with and without expandable characters, to estimate volumetric soil water content (θ) from readings of scaled frequency (SF) acquired with the Diviner 2000® sensor. The analysis was carried out on six soils collected in western Sicily, sieved at 5 mm, and repacked to obtain the maximum and minimum bulk density (ρb). During an air-drying process SF values, the corresponding gravimetric soil water content (U) and ρb were monitored. In shrinking/swelling clay soils, due to the contraction process, the variation of dielectric permittivity was affected by the combination of the mutual proportions between the water volumes and the air present in the soil. Thus, to account for the changes of ρb with U, the proposed model assumed θ as the dependent variable being SF and ρb the independent variables; then the model’s parameters were estimated based on the sand and clay fractions. The model validation was finally carried out based on data acquired in undisturbed monoliths sampled in the same areas. The estimated θ, θestim, was generally close to the corresponding measured, θmeas, with Root Mean Square Errors (RMSE) generally lower than 0.049 cm3 cm−3, quite low Mean Bias Errors (MBE), ranging between −0.028 and 0.045 cm3 cm−3, and always positive Nash-Sutcliffe Efficiency index (NSE), confirming the good performance of the model

    Adapting FAO-56 Spreadsheet Program to estimate olive orchard transpiration fluxes under soil water stress condition

    Get PDF
    In the Mediterranean environment, where the period of crops growth does not coincide with the rainy season, the crop is subject to water stress periods that may be amplified with improper irrigation management. Agro-hydrological models can be considered an economic and simple tool to optimize irrigation water use, mainly when water represents a limiting factor for crop production. In the last two decades, agro-hydrological physically based models have been developed to simulate mass and energy exchange processes in the soil-plant-atmosphere system (Feddes et al., 1978; Bastiaanssen et al., 2007). Unfortunately these models, although very reliable, as a consequence of the high number of required variables and the complex computational analysis, cannot often be used. Therefore, simplified agro-hydrological models may represent an useful and simple tool for practical irrigation scheduling. The main objective of the work is to assess, for an olive orchard, the suitability of FAO-56 spreadsheet agrohydrological model to estimate a long time series of field transpiration, soil water content and crop water stress dynamic. A modification of the spreadsheet is suggested in order to adapt the simulations to a crop tolerant to water stress. In particular, by implementing a new crop water stress function, actual transpiration fluxes and an ecophysiological stress indicator, i. e. the relative transpiration, are computed in order to evaluate a plant-based irrigation scheduling parameter. Validation of the proposed amendment is carried out by means of measured sap fluxes, measured on different plants and up-scaled to plot level. Spatial and temporal variability of soil water contents in the plot was measured, at several depths, using the Diviner 2000 capacitance probe (Sentek Environmental Technologies, 2000) and TDR-100 (Campbell scientific, Inc.) system. The detailed measurements of soil water content, allowed to explore the high spatial variability of soil water content due to the combined effect of the punctual irrigation and the non-uniform root density distribution. A further validation of the plant-based irrigation-timing indicator will be carried out by considering another ecophysiological stress variable like the predawn leaf water potential. Accuracy of the model output was assessed using the Mean Absolute Difference, the Root Mean Square Difference and the efficiency index of Nash and Sutcliffe. Experimental data, recorded during three years of field observation, allowed, with a great level of detail, to investigate on the dynamic of water fluxes from the soil to atmosphere as well as to validate the proposed amendment of the FAO-56 spreadsheet. The modified model simulated with a satisfactory approximation the measured values of average soil water content in the root zone, with error of estimation equal to about 2.0%. These differences can be considered acceptable for practical applications taking into account the intrinsic variability of the data especially in the soil moisture point measurements. An error less than 1 mm was calculated in the daily transpiration estimation. A good performance was observed in the estimation of the cumulate transpiration fluxes
    corecore