23 research outputs found

    Les algorithmes et la puissance de calcul dans les techniques de prévision pour les géosciences en grande dimension vus sous l'angle de l'optimisation mathématique

    Get PDF
    Les problèmes de prévision dans les géosciences sont multiples et importants. Les enjeux applicatifs en sont extrêmement nombreux et bien connus de tous, qu’il s’agisse notamment de la prévision dans les domaines météorologiques, océanographiques, ou en neutronique, pour ne citer que quelques exemples

    Latent Space Data Assimilation by using Deep Learning

    Full text link
    Performing Data Assimilation (DA) at a low cost is of prime concern in Earth system modeling, particularly at the time of big data where huge quantities of observations are available. Capitalizing on the ability of Neural Networks techniques for approximating the solution of PDE's, we incorporate Deep Learning (DL) methods into a DA framework. More precisely, we exploit the latent structure provided by autoencoders (AEs) to design an Ensemble Transform Kalman Filter with model error (ETKF-Q) in the latent space. Model dynamics are also propagated within the latent space via a surrogate neural network. This novel ETKF-Q-Latent (thereafter referred to as ETKF-Q-L) algorithm is tested on a tailored instructional version of Lorenz 96 equations, named the augmented Lorenz 96 system: it possesses a latent structure that accurately represents the observed dynamics. Numerical experiments based on this particular system evidence that the ETKF-Q-L approach both reduces the computational cost and provides better accuracy than state of the art algorithms, such as the ETKF-Q.Comment: 15 pages, 7 figures and 3 table

    A filtered multilevel Monte Carlo method for estimating the expectation of discretized random fields

    Full text link
    We investigate the use of multilevel Monte Carlo (MLMC) methods for estimating the expectation of discretized random fields. Specifically, we consider a setting in which the input and output vectors of the numerical simulators have inconsistent dimensions across the multilevel hierarchy. This requires the introduction of grid transfer operators borrowed from multigrid methods. Starting from a simple 1D illustration, we demonstrate numerically that the resulting MLMC estimator deteriorates the estimation of high-frequency components of the discretized expectation field compared to a Monte Carlo (MC) estimator. By adapting mathematical tools initially developed for multigrid methods, we perform a theoretical spectral analysis of the MLMC estimator of the expectation of discretized random fields, in the specific case of linear, symmetric and circulant simulators. This analysis provides a spectral decomposition of the variance into contributions associated with each scale component of the discretized field. We then propose improved MLMC estimators using a filtering mechanism similar to the smoothing process of multigrid methods. The filtering operators improve the estimation of both the small- and large-scale components of the variance, resulting in a reduction of the total variance of the estimator. These improvements are quantified for the specific class of simulators considered in our spectral analysis. The resulting filtered MLMC (F-MLMC) estimator is applied to the problem of estimating the discretized variance field of a diffusion-based covariance operator, which amounts to estimating the expectation of a discretized random field. The numerical experiments support the conclusions of the theoretical analysis even with non-linear simulators, and demonstrate the improvements brought by the proposed F-MLMC estimator compared to both a crude MC and an unfiltered MLMC estimator

    Towards the Industrialization of New MDO Methodologies and Tools for Aircraft Design

    Get PDF
    An overall summary of the Institute of Technology IRT Saint Exupery MDA-MDO project (Multi-Disciplinary Analysis - Multidisciplinary Design Optimization) is presented. The aim of the project is to develop efficient capabilities (methods, tools and a software platform) to enable industrial deployment of MDO methods in industry. At IRT Saint Exupery, industrial and academic partners collaborate in a single place to the development of MDO methodologies; the advantage provided by this mixed organization is to directly benefit from both advanced methods at the cutting edge of research and deep knowledge of industrial needs and constraints. This paper presents the three main goals of the project: the elaboration of innovative MDO methodologies and formulations (also referred to as architectures in the literature 1) adapted to the resolution of industrial aircraft optimization design problems, the development of a MDO platform featuring scalable MDO capabilities for transfer to industry and the achievement of a simulation-based optimization of an aircraft engine pylon with industrial Computational Fluid Dynamics (CFD) and Computational Structural Mechanics (CSM) tools

    Résolution de problèmes des moindres carrés non-linéaires régularisés dans l'espace dual avec applications à l'assimilation de données

    No full text
    Cette thèse étudie la méthode du gradient conjugué et la méthode de Lanczos pour la résolution de problèmes aux moindres carrés non-linéaires sous déterminés et régularisés par un terme de pénalisation quadratique. Ces problèmes résultent souvent d'une approche du maximum de vraisemblance, et impliquent un ensemble de m observations physiques et n inconnues estimées par régression non linéaire. Nous supposons ici que n est grand par rapport à m. Un tel cas se présente lorsque des champs tridimensionnels sont estimés à partir d'observations physiques, par exemple dans l'assimilation de données appliquée aux modèles du système terrestre. Un algorithme largement utilisé dans ce contexte est la méthode de Gauss- Newton (GN), connue dans la communauté d'assimilation de données sous le nom d'assimilation variationnelle des données quadridimensionnelles. Le procédé GN repose sur la résolution approchée d'une séquence de moindres carrés linéaires optimale dans laquelle la fonction coût non-linéaire des moindres carrés est approximée par une fonction quadratique dans le voisinage de l'itération non linéaire en cours. Cependant, il est bien connu que cette simple variante de l'algorithme de Gauss-Newton ne garantit pas une diminution monotone de la fonction coût et sa convergence n'est donc pas garantie. Cette difficulté est généralement surmontée en utilisant une recherche linéaire (Dennis and Schnabel, 1983) ou une méthode de région de confiance (Conn, Gould and Toint, 2000), qui assure la convergence globale des points critiques du premier ordre sous des hypothèses faibles. Nous considérons la seconde de ces approches dans cette thèse. En outre, compte tenu de la grande échelle de ce problème, nous proposons ici d'utiliser un algorithme de région de confiance particulier s'appuyant sur la méthode du gradient conjugué tronqué de Steihaug-Toint pour la résolution approchée du sous-problème (Conn, Gould and Toint, 2000, p. 133-139) La résolution de ce sous-problème dans un espace à n dimensions (par CG ou Lanczos) est considérée comme l'approche primale. Comme alternative, une réduction significative du coût de calcul est possible en réécrivant l'approximation quadratique dans l'espace à m dimensions associé aux observations. Ceci est important pour les applications à grande échelle telles que celles quotidiennement traitées dans les systèmes de prévisions météorologiques. Cette approche, qui effectue la minimisation de l'espace à m dimensions à l'aide CG ou de ces variantes, est considérée comme l'approche duale. La première approche proposée (Da Silva et al., 1995; Cohn et al., 1998; Courtier, 1997), connue sous le nom de Système d'analyse Statistique de l'espace Physique (PSAS) dans la communauté d'assimilation de données, commence par la minimisation de la fonction de coût duale dans l'espace de dimension m par un CG préconditionné (PCG), puis revient l'espace à n dimensions. Techniquement, l'algorithme se compose de formules de récurrence impliquant des vecteurs de taille m au lieu de vecteurs de taille n. Cependant, l'utilisation de PSAS peut être excessivement coûteuse car il a été remarqué que la fonction de coût linéaire des moindres carrés ne diminue pas monotonement au cours des itérations non-linéaires. Une autre approche duale, connue sous le nom de méthode du gradient conjugué préconditionné restreint (RPCG), a été proposée par Gratton and Tshimanga (2009). Celle-ci génère les mêmes itérations en arithmétique exacte que l'approche primale, à nouveau en utilisant la formule de récurrence impliquant des vecteurs taille m. L'intérêt principal de RPCG est qu'il en résulte une réduction significative de la mémoire utilisée et des coûts de calcul tout en conservant la propriété de convergence souhaitée, contrairement à l'algorithme PSAS.This thesis investigates the conjugate-gradient method and the Lanczos method for the solution of under-determined nonlinear least-squares problems regularized by a quadratic penalty term. Such problems often result from a maximum likelihood approach, and involve a set of m physical observations and n unknowns that are estimated by nonlinear regression. We suppose here that n is large compared to m. These problems are encountered for instance when three-dimensional fields are estimated from physical observations, as is the case in data assimilation in Earth system models. A widely used algorithm in this context is the Gauss-Newton (GN) method, known in the data assimilation community under the name of incremental four dimensional variational data assimilation. The GN method relies on the approximate solution of a sequence of linear least-squares problems in which the nonlinear least-squares cost function is approximated by a quadratic function in the neighbourhood of the current nonlinear iterate. However, it is well known that this simple variant of the Gauss-Newton algorithm does not ensure a monotonic decrease of the cost function and that convergence is not guaranteed. Removing this difficulty is typically achieved by using a line-search (Dennis and Schnabel, 1983) or trust-region (Conn, Gould and Toint, 2000) strategy, which ensures global convergence to first order critical points under mild assumptions. We consider the second of these approaches in this thesis. Moreover, taking into consideration the large-scale nature of the problem, we propose here to use a particular trust-region algorithm relying on the Steihaug-Toint truncated conjugate-gradient method for the approximate solution of the subproblem (Conn, Gould and Toint, 2000, pp. 133-139). Solving this subproblem in the n-dimensional space (by CG or Lanczos) is referred to as the primal approach. Alternatively, a significant reduction in the computational cost is possible by rewriting the quadratic approximation in the m-dimensional space associated with the observations. This is important for large-scale applications such as those solved daily in weather prediction systems. This approach, which performs the minimization in the m-dimensional space using CG or variants thereof, is referred to as the dual approach. The first proposed dual approach (Courtier, 1997), known as the Physical-space Statistical Analysis System (PSAS) in the data assimilation community starts by solving the corresponding dual cost function in m-dimensional space by a standard preconditioned CG (PCG), and then recovers the step in n-dimensional space through multiplication by an n by m matrix. Technically, the algorithm consists of recurrence formulas involving m-vectors instead of n-vectors. However, the use of PSAS can be unduly costly as it was noticed that the linear least-squares cost function does not monotonically decrease along the nonlinear iterations when applying standard termination. Another dual approach has been proposed by Gratton and Tshimanga (2009) and is known as the Restricted Preconditioned Conjugate Gradient (RPCG) method. It generates the same iterates in exact arithmetic as those generated by the primal approach, again using recursion formula involving m-vectors. The main interest of RPCG is that it results in significant reduction of both memory and computational costs while maintaining the desired convergence property, in contrast with the PSAS algorithm. The relation between these two dual approaches and the question of deriving efficient preconditioners (Gratton, Sartenaer and Tshimanga, 2011), essential when large-scale problems are considered, was not addressed in Gratton and Tshimanga (2009)

    Görüntü kümelendirme ve sınıflandırma algoritmalarının performansını arttırmak için istatiksel öğrenme ve optimizasyon metodlarının kullanımı

    No full text
    Remote sensing techniques are vital for early detection of several problems such as natural disasters, ecological problems and collecting information necessary for finding optimum solutions to those problems. Remotely sensed information has also important uses in predicting the future risks, urban planning, communication.Recent developments in remote sensing instrumentation offered a challenge to the mathematical and statistical methods to process the acquired information. Classification of satellite images in the context of land cover classification is the main concern of this study. Land cover classification can be performed by statistical learning methods like additive models, decision trees, neural networks, k-means methods which are already popular in unsupervised classification and clustering of image scene inverse problems. Due to the degradation and corruption of satellite images, the classification performance is limited both by the accuracy of clustering and by the extent of the classification. In this study, we are concerned with understanding the performance of the available unsupervised methods with k-means, supervised methods with Gaussian maximum likelihood which are very popular methods in land cover classification. A broader approach to the classification problem based on finding the optimal discriminants from a larger range of functions is considered also in this work. A novel method based on threshold decomposition and Boolean discriminant functions is developed as an implementable application of this approach. All methods are applied to BILSAT and Landsat satellite images using MATLAB software.M.S. - Master of Scienc

    Multivariate extensions of the Multilevel Best Linear Unbiased Estimator for ensemble-variational data assimilation

    No full text
    Multilevel estimators aim at reducing the variance of Monte Carlo statistical estimators, by combining samples generated with simulators of different costs and accuracies. In particular, the recent work of Schaden and Ullmann (2020) on the multilevel best linear unbiased estimator (MLBLUE) introduces a framework unifying several multilevel and multifidelity techniques. The MLBLUE is reintroduced here using a variance minimization approach rather than the regression approach of Schaden and Ullmann. We then discuss possible extensions of the scalar MLBLUE to a multidimensional setting, i.e. from the expectation of scalar random variables to the expectation of random vectors. Several estimators of increasing complexity are proposed: a) multilevel estimators with scalar weights, b) with element-wise weights, c) with spectral weights and d) with general matrix weights. The computational cost of each method is discussed. We finally extend the MLBLUE to the estimation of second-order moments in the multidimensional case, i.e. to the estimation of covariance matrices. The multilevel estimators proposed are d) a multilevel estimator with scalar weights and e) with element-wise weights. In large-dimension applications such as data assimilation for geosciences, the latter estimator is computationnally unaffordable. As a remedy, we also propose f) a multilevel covariance matrix estimator with optimal multilevel localization, inspired by the optimal localization theory of Ménétrier and Auligné (2015). Some practical details on weighted MLMC estimators of covariance matrices are given in appendix

    Résolution de problèmes des moindres carrés non-linéaires régularisés dans l'espace dual avec applications à l'assimilation de données

    No full text
    Cette thèse étudie la méthode du gradient conjugué et la méthode de Lanczos pour la résolution de problèmes aux moindres carrés non-linéaires sous déterminés et régularisés par un terme de pénalisation quadratique. Ces problèmes résultent souvent d'une approche du maximum de vraisemblance, et impliquent un ensemble de m observations physiques et n inconnues estimées par régression non linéaire. Nous supposons ici que n est grand par rapport à m. Un tel cas se présente lorsque des champs tridimensionnels sont estimés à partir d'observations physiques, par exemple dans l'assimilation de données appliquée aux modèles du système terrestre. Un algorithme largement utilisé dans ce contexte est la méthode de Gauss- Newton (GN), connue dans la communauté d'assimilation de données sous le nom d'assimilation variationnelle des données quadridimensionnelles. Le procédé GN repose sur la résolution approchée d'une séquence de moindres carrés linéaires optimale dans laquelle la fonction coût non-linéaire des moindres carrés est approximée par une fonction quadratique dans le voisinage de l'itération non linéaire en cours. Cependant, il est bien connu que cette simple variante de l'algorithme de Gauss-Newton ne garantit pas une diminution monotone de la fonction coût et sa convergence n'est donc pas garantie. Cette difficulté est généralement surmontée en utilisant une recherche linéaire (Dennis and Schnabel, 1983) ou une méthode de région de confiance (Conn, Gould and Toint, 2000), qui assure la convergence globale des points critiques du premier ordre sous des hypothèses faibles. Nous considérons la seconde de ces approches dans cette thèse. En outre, compte tenu de la grande échelle de ce problème, nous proposons ici d'utiliser un algorithme de région de confiance particulier s'appuyant sur la méthode du gradient conjugué tronqué de Steihaug-Toint pour la résolution approchée du sous-problème (Conn, Gould and Toint, 2000, p. 133-139) La résolution de ce sous-problème dans un espace à n dimensions (par CG ou Lanczos) est considérée comme l'approche primale. Comme alternative, une réduction significative du coût de calcul est possible en réécrivant l'approximation quadratique dans l'espace à m dimensions associé aux observations. Ceci est important pour les applications à grande échelle telles que celles quotidiennement traitées dans les systèmes de prévisions météorologiques. Cette approche, qui effectue la minimisation de l'espace à m dimensions à l'aide CG ou de ces variantes, est considérée comme l'approche duale. La première approche proposée (Da Silva et al., 1995; Cohn et al., 1998; Courtier, 1997), connue sous le nom de Système d'analyse Statistique de l'espace Physique (PSAS) dans la communauté d'assimilation de données, commence par la minimisation de la fonction de coût duale dans l'espace de dimension m par un CG préconditionné (PCG), puis revient l'espace à n dimensions. Techniquement, l'algorithme se compose de formules de récurrence impliquant des vecteurs de taille m au lieu de vecteurs de taille n. Cependant, l'utilisation de PSAS peut être excessivement coûteuse car il a été remarqué que la fonction de coût linéaire des moindres carrés ne diminue pas monotonement au cours des itérations non-linéaires. Une autre approche duale, connue sous le nom de méthode du gradient conjugué préconditionné restreint (RPCG), a été proposée par Gratton and Tshimanga (2009). Celle-ci génère les mêmes itérations en arithmétique exacte que l'approche primale, à nouveau en utilisant la formule de récurrence impliquant des vecteurs taille m. L'intérêt principal de RPCG est qu'il en résulte une réduction significative de la mémoire utilisée et des coûts de calcul tout en conservant la propriété de convergence souhaitée, contrairement à l'algorithme PSAS.This thesis investigates the conjugate-gradient method and the Lanczos method for the solution of under-determined nonlinear least-squares problems regularized by a quadratic penalty term. Such problems often result from a maximum likelihood approach, and involve a set of m physical observations and n unknowns that are estimated by nonlinear regression. We suppose here that n is large compared to m. These problems are encountered for instance when three-dimensional fields are estimated from physical observations, as is the case in data assimilation in Earth system models. A widely used algorithm in this context is the Gauss-Newton (GN) method, known in the data assimilation community under the name of incremental four dimensional variational data assimilation. The GN method relies on the approximate solution of a sequence of linear least-squares problems in which the nonlinear least-squares cost function is approximated by a quadratic function in the neighbourhood of the current nonlinear iterate. However, it is well known that this simple variant of the Gauss-Newton algorithm does not ensure a monotonic decrease of the cost function and that convergence is not guaranteed. Removing this difficulty is typically achieved by using a line-search (Dennis and Schnabel, 1983) or trust-region (Conn, Gould and Toint, 2000) strategy, which ensures global convergence to first order critical points under mild assumptions. We consider the second of these approaches in this thesis. Moreover, taking into consideration the large-scale nature of the problem, we propose here to use a particular trust-region algorithm relying on the Steihaug-Toint truncated conjugate-gradient method for the approximate solution of the subproblem (Conn, Gould and Toint, 2000, pp. 133-139). Solving this subproblem in the n-dimensional space (by CG or Lanczos) is referred to as the primal approach. Alternatively, a significant reduction in the computational cost is possible by rewriting the quadratic approximation in the m-dimensional space associated with the observations. This is important for large-scale applications such as those solved daily in weather prediction systems. This approach, which performs the minimization in the m-dimensional space using CG or variants thereof, is referred to as the dual approach. The first proposed dual approach (Courtier, 1997), known as the Physical-space Statistical Analysis System (PSAS) in the data assimilation community starts by solving the corresponding dual cost function in m-dimensional space by a standard preconditioned CG (PCG), and then recovers the step in n-dimensional space through multiplication by an n by m matrix. Technically, the algorithm consists of recurrence formulas involving m-vectors instead of n-vectors. However, the use of PSAS can be unduly costly as it was noticed that the linear least-squares cost function does not monotonically decrease along the nonlinear iterations when applying standard termination. Another dual approach has been proposed by Gratton and Tshimanga (2009) and is known as the Restricted Preconditioned Conjugate Gradient (RPCG) method. It generates the same iterates in exact arithmetic as those generated by the primal approach, again using recursion formula involving m-vectors. The main interest of RPCG is that it results in significant reduction of both memory and computational costs while maintaining the desired convergence property, in contrast with the PSAS algorithm. The relation between these two dual approaches and the question of deriving efficient preconditioners (Gratton, Sartenaer and Tshimanga, 2011), essential when large-scale problems are considered, was not addressed in Gratton and Tshimanga (2009).TOULOUSE-INP (315552154) / SudocSudocFranceF
    corecore