6,716 research outputs found

    Application of the parametrical surface-wave prediction model to rapidly varying wind fields during JONSWAP 1973

    No full text
    The capability of a parametrical surface wave model to predict the sea state on a small array for highly variable wind fields is shown for three examples. The model treats the wind sea, for which the nonlinear interaction is most effective, in a parametrical sense. The swell is propagated along characteristics, and the source function for the swell is assumed to be zero. The model output is compared with wave measure- ments from the JONSWAP 73 experimen

    Best practices for HPM-assisted performance engineering on modern multicore processors

    Full text link
    Many tools and libraries employ hardware performance monitoring (HPM) on modern processors, and using this data for performance assessment and as a starting point for code optimizations is very popular. However, such data is only useful if it is interpreted with care, and if the right metrics are chosen for the right purpose. We demonstrate the sensible use of hardware performance counters in the context of a structured performance engineering approach for applications in computational science. Typical performance patterns and their respective metric signatures are defined, and some of them are illustrated using case studies. Although these generic concepts do not depend on specific tools or environments, we restrict ourselves to modern x86-based multicore processors and use the likwid-perfctr tool under the Linux OS.Comment: 10 pages, 2 figure

    The QCD phase diagram from analytic continuation

    Get PDF
    We present the crossover line between the quark gluon plasma and the hadron gas phases for small real chemical potentials. First we determine the effect of imaginary values of the chemical potential on the transition temperature using lattice QCD simulations. Then we use various formulas to perform an analytic continuation to real values of the baryo-chemical potential. Our data set maintains strangeness neutrality to match the conditions of heavy ion physics. The systematic errors are under control up to μB300\mu_B\approx 300 MeV. For the curvature of the transition line we find that there is an approximate agreement between values from three different observables: the chiral susceptibility, chiral condensate and strange quark susceptibility. The continuum extrapolation is based on Nt=N_t= 10, 12 and 16 lattices. By combining the analysis for these three observables we find, for the curvature, the value κ=0.0149±0.0021\kappa = 0.0149 \pm 0.0021.Comment: 14 pages, 4 figures, revised versio

    Gravitating Brane Systems: Some General Theorems

    Full text link
    Multidimensional gravity interacting with intersecting electric and magnetic pp-branes is considered for fields depending on a single variable. Some general features of the system behaviour are revealed without solving the field equations. Thus, essential asymptotic properties of isotropic cosmologies are indicated for different signs of spatial curvature; a no-hair-type theorem and a single-time theorem for black holes are proved (the latter makes sense in models with multiple time coordinates). The validity of the general observations is verified for a class of exact solutions known for the cases when certain vectors, built from the input parameters of the model, are either orthogonal in minisuperspace, or form mutually orthogonal subsystems. From the non-existence of Lorentzian wormholes, a universal restriction is obtained, applicable to orthogonal or block-orthogonal subsystems of any pp-brane system.Comment: 13 pages, Latex2e, 1 Latex figure, uses bezier.st

    Substrate rigidity deforms and polarizes active gels

    Get PDF
    We present a continuum model of the coupling between cells and substrate that accounts for some of the observed substrate-stiffness dependence of cell properties. The cell is modeled as an elastic active gel, adapting recently developed continuum theories of active viscoelastic fluids. The coupling to the substrate enters as a boundary condition that relates the cell's deformation field to local stress gradients. In the presence of activity, the coupling to the substrate yields spatially inhomogeneous contractile stresses and deformations in the cell and can enhance polarization, breaking the cell's front-rear symmetry.Comment: 6 pages, 4 figures, EPL forma

    Bouncing inflation in nonlinear R2+R4R^2+R^4 gravitational model

    Get PDF
    We study a gravitational model with curvature-squared R2R^2 and curvature-quartic R4R^4 nonlinearities. The effective scalar degree of freedom ϕ\phi (scalaron) has a multi-valued potential U(ϕ)U(\phi) consisting of a number of branches. These branches are fitted with each other in the branching and monotonic points. In the case of four-dimensional space-time, we show that the monotonic points are penetrable for scalaron while in the vicinity of the branching points scalaron has the bouncing behavior and cannot cross these points. Moreover, there are branching points where scalaron bounces an infinite number of times with decreasing amplitude and the Universe asymptotically approaches the de Sitter stage. Such accelerating behavior we call bouncing inflation. For this accelerating expansion there is no need for original potential U(ϕ)U(\phi) to have a minimum or to check the slow-roll conditions. A necessary condition for such inflation is the existence of the branching points. This is a new type of inflation. We show that bouncing inflation takes place both in the Einstein and Brans-Dicke frames.Comment: RevTex 13 pages, 13 figures, a few comments and references adde
    corecore