2,903 research outputs found

    Complexity and hierarchical game of life

    Full text link
    Hierarchical structure is an essential part of complexity, important notion relevant for a wide range of applications ranging from biological population dynamics through robotics to social sciences. In this paper we propose a simple cellular-automata tool for study of hierarchical population dynamics

    Compositional Performance Modelling with the TIPPtool

    Get PDF
    Stochastic process algebras have been proposed as compositional specification formalisms for performance models. In this paper, we describe a tool which aims at realising all beneficial aspects of compositional performance modelling, the TIPPtool. It incorporates methods for compositional specification as well as solution, based on state-of-the-art techniques, and wrapped in a user-friendly graphical front end. Apart from highlighting the general benefits of the tool, we also discuss some lessons learned during development and application of the TIPPtool. A non-trivial model of a real life communication system serves as a case study to illustrate benefits and limitations

    Functional properties of neurons derived from in vitro reprogrammed postnatal astroglia

    Get PDF
    With the exception of astroglia-like cells in the neurogenic niches of the telencephalic subependymal or hippocampal subgranular zone, astroglia in all other regions of the adult mouse brain do not normally generate neurons. Previous studies have shown, however, that early postnatal cortical astroglia in culture can be reprogrammed to adopt a neuronal fate after forced expression of Pax6, a transcription factor (TF) required for proper neuronal specification during embryonic corticogenesis. Here we show that also the proneural genes neurogenin-2 and Mash1 (mammalian achaete schute homolog 1) possess the ability to reprogram astroglial cells from early postnatal cerebral cortex. By means of time-lapse imaging of green fluorescent astroglia, we provide direct evidence that it is indeed cells with astroglial characteristics that give rise to neurons. Using patch-clamp recordings in culture, we show that astroglia-derived neurons acquire active conductances and are capable of firing action potentials, thus displaying hallmarks of true neurons. However, independent of the TF used for reprogramming, astroglia-derived neurons appear to mature more slowly compared with embryonic-born neurons and fail to generate a functional presynaptic output within the culturing period. However, when cocultured with embryonic cortical neurons, astroglia-derived neurons receive synaptic input, demonstrating that they are competent of establishing a functional postsynaptic compartment. Our data demonstrate that single TFs are capable of inducing a remarkable functional reprogramming of astroglia toward a truly neuronal identity

    Constraints on Lorentz Invariance Violation using INTEGRAL/IBIS observations of GRB041219A

    Get PDF
    One of the experimental tests of Lorentz invariance violation is to measure the helicity dependence of the propagation velocity of photons originating in distant cosmological obejcts. Using a recent determination of the distance of the Gamma-Ray Burst GRB 041219A, for which a high degree of polarization is observed in the prompt emission, we are able to improve by 4 orders of magnitude the existing constraint on Lorentz invariance violation, arising from the phenomenon of vacuum birefringence.Comment: 5 pages, 3 figures, accepted for publication as a Rapid Communication in Physical Review

    Long term hard X-ray variability of the anomalous X-ray pulsar 1RXS J170849.0-400910 discovered with INTEGRAL

    Full text link
    We report on a multi-band high-energy observing campaign aimed at studying the long term spectral variability of the Anomalous X-ray Pulsar (AXP) 1RXS J170849.0-400910, one of the magnetar candidates. We observed 1RXS J170849.0-400910 in Fall 2006 and Spring 2007 simultaneously with Swift/XRT, in the 0.1-10 keV energy range, and with INTEGRAL/IBIS, in the 20-200 keV energy range. Furthermore, we also reanalyzed, using the latest calibration and software, all the publicly available INTEGRAL data since 2002, and the soft X-ray data starting from 1999 taken using BeppoSAX, Chandra, XMM, and Swift/XRT, in order to study the soft and hard X-ray spectral variability of 1RXS J170849.0-400910. We find a long-term variability of the hard X-ray flux, extending the hardness-intensity correlation proposed for this source over 2 orders of magnitude in energy.Comment: 5 pages, 2 figures, accepted for publication in Astronomy & Astrophysics main journa

    Evidence for the PSL(2∣|2) Wess-Zumino-Novikov-Witten model as a model for the plateau transition in Quantum Hall effect: Evaluation of numerical simulations

    Full text link
    In this paper I revise arguments in favour of the PSL(2∣|2) Wess-Zumino-Novikov-Witten (WZNW) model as a theory of the plateau transition in Integer Quantum Hall effect. I show that all available numerical data (including the correlation length exponent Îœ\nu) are consistent with the predictions of such WZNW model with the level k=8k=8.Comment: 11 pages, no figure

    Depositional Environment of Coral–Rudist Associations in the Upper Cretaceous Cardenas Formation (Central Mexico)

    Get PDF
    In the Cardenas Formation (central Mexico), a 175 m thick sedimentary sequence of Maastrichtian age was analyzed with respect to its palaeontology and sedimentology. A wide variety of lithological and palaeontological features characterize this sequence comprising unfossiliferous and fossil-bearing sand- and siltstones, and diverse rudist and coral–rudist associations in carbonate or mixed carbonate/clastic lithologies. A total of 24 rudist and coral–rudist associations are exposed in the investigated section, which are grouped into 5 limestone units. Radiolitid assemblages, coral–rudist reefs, coral-domi­na­ted reefs, and hippuritid-dominated reefs are present. The stacking pattern of these reef intervals indicates a general transgressive trend through the entire section. Smaller-scale facies trends could be distinguished within each limestone unit, comprising deepening-upward sequences, defined by a shoreface–calcareous algae–radiolitid–marl facies transition, and shallowing-upward sequences defi­ned by a hippuritid–actaeonellid–coral/rudist facies transition. This cyclic sedimentation pattern is obscured by an episodic input of clastic sediments derived from the uplifting Sierra Madre Oriental, which in turn triggered either the development or decline of reefs
    • 

    corecore