110 research outputs found

    Representation of visual scenes by local neuronal populations in layer 2/3 of mouse visual cortex

    Get PDF
    How are visual scenes encoded in local neural networks of visual cortex? In rodents, visual cortex lacks a columnar organization so that processing of diverse features from a spot in visual space could be performed locally by populations of neighboring neurons. To examine how complex visual scenes are represented by local microcircuits in mouse visual cortex we measured visually evoked responses of layer 2/3 neuronal populations using 3D two-photon calcium imaging. Both natural and artificial movie scenes (10 seconds duration) evoked distributed and sparsely organized responses in local populations of 70–150 neurons within the sampled volumes. About 50% of neurons showed calcium transients during visual scene presentation, of which about half displayed reliable temporal activation patterns. The majority of the reliably responding neurons were activated primarily by one of the four visual scenes applied. Consequently, single-neurons performed poorly in decoding, which visual scene had been presented. In contrast, high levels of decoding performance (>80%) were reached when considering population responses, requiring about 80 randomly picked cells or 20 reliable responders. Furthermore, reliable responding neurons tended to have neighbors sharing the same stimulus preference. Because of this local redundancy, it was beneficial for efficient scene decoding to read out activity from spatially distributed rather than locally clustered neurons. Our results suggest a population code in layer 2/3 of visual cortex, where the visual environment is dynamically represented in the activation of distinct functional sub-networks

    NUMERISCHES MODELL FÜR DIE SIMULATION EINER LASERSTRAHLSCHWEIßUNG VON QUARZGLAS

    Get PDF
    Ausgehend von den fundierten Erfahrungen, die für das Schweißen von verschiedensten Metallen vorliegen, wird an der Professur Stahlbau der Bauhaus-Universität Weimar ein neuartiges Verfahren zum CO2-Laserstrahlschweißen von Quarzglas numerisch untersucht. Dabei kommt die kommerzielle FE-Software SYSWELD® zum Einsatz. Die erforderlichen Versuche werden in Zusammenarbeit mit dem Institut für Fügetechnik und Werkstoffprüfung GmbH aus Jena realisiert. Die numerische Analyse wird eingesetzt, um geeignete Prozessparameter zu bestimmen und deren Auswirkungen auf die transienten thermischen und mechanischen Vorgänge, die während des Schweißvorgangs ablaufen abzubilden. Um die aus der Simulation erhaltenen Aussagen zu überprüfen, ist es erforderlich, das Berechnungsmodell mittels Daten aus Versuchsschweißungen zu kalibrieren. Dabei sind die verwendeten Materialmodelle sowie die der Simulation zugrunde gelegten Materialkennwerte zu validieren. Es stehen verschiedene rheologische Berechnungsmodelle zur Auswahl, die die viskosen Materialeigenschaften des Glases abbilden. Dabei werden die drei mechanischen Grundelemente, die HOOKEsche Feder, der NEWTONsche Dämpfungszylinder und das ST.-VENANT-Element miteinander kombiniert. Die Möglichkeit, thermische und mechanische Vorgänge innerhalb des Glases während des Schweißvorgangs und nach vollständiger Abkühlung, vorhersagen zu können, gestattet es den Schweißvorgang über eine Optimierung der Verfahrensparameter gezielt dahingehend zu beeinflussen, die Wirtschaftlichkeit des Schweißverfahrens zu verbessern, und ein zuverlässiges Schweißergebnis zu erhalten. Dabei können auch nur unter hohem experimentellen Aufwand durchführbare Versuche simuliert werden, um eine Vorhersage zu treffen, ob es zweckmäßig ist, den Versuch auch in der Praxis zu fahren. Dies führt zu einer Reduzierung des experimentellen Aufwandes und damit zu einer Verkürzung des Entwicklungszeitraumes für das angestrebte Verfahren

    M+D: conceptual guidelines for compiling a materials library

    Get PDF
    This article proposes to present a study conducted by the Raw Materials research group, the results of which comprise the conceptual guidelines for compiling an M+D material library. The study includes the topic, materials and design taking the impact of the changes that came into being in the post industrial era on project methodologies and the search for information regarding materials. Taking into account the importance and complexity that these relationships have taken on currently, we have studied the issue of materials based on Manzini (1983) and Ashby and Johnson (2002). Afterward different databases and materials libraries located in the Brazil, the United States, France and Italy geared toward design professionals and students were analyzed to understand what information and means of access to them were available. The project methodologies were approached based on Löbach (1991), Bürdeck (1994), Schulmann (1994), Baxter (1998), Dantas (1998 and 2005) and Papanek (1995 and 2000). This study sought to identify the key elements of the role of materials in the project process today, to serve as a parameter for the analysis of the models studied. A comparative analysis of the models investigated enabled identification of positive and negative aspects to adapt to the needs previously mentioned and identify conceptual guidelines for compiling a collection of materials for use in design projects. Keywords: Design, Materials, Project Methodology, Library</p

    Virulence Pattern Analysis of Three Listeria monocytogenes Lineage I Epidemic Strains with Distinct Outbreak Histories

    Get PDF
    Strains of the food-borne pathogen Listeria (L.) monocytogenes have diverse virulence potential. This study focused on the virulence of three outbreak strains: the CC1 strain PF49 (serovar 4b) from a cheese-associated outbreak in Switzerland, the clinical CC2 strain F80594 (serovar 4b), and strain G6006 (CC3, serovar 1/2a), responsible for a large gastroenteritis outbreak in the USA due to chocolate milk. We analysed the genomes and characterized the virulence in vitro and in vivo. Whole-genome sequencing revealed a high conservation of the major virulence genes. Minor deviations of the gene contents were found in the autolysins Ami, Auto, and IspC. Moreover, different ActA variants were present. Strain PF49 and F80594 showed prolonged survival in the liver of infected mice. Invasion and intracellular proliferation were similar for all strains, but the CC1 and CC2 strains showed increased spreading in intestinal epithelial Caco2 cells compared to strain G6006. Overall, this study revealed long-term survival of serovar 4b strains F80594 and PF49 in the liver of mice. Future work will be needed to determine the genes and molecular mechanism behind the long-term survival of L. monocytogenes strains in organs

    Radiation enhancement and "temperature" in the collapse regime of gravitational scattering

    Full text link
    We generalize the semiclassical treatment of graviton radiation to gravitational scattering at very large energies smP\sqrt{s}\gg m_P and finite scattering angles Θs\Theta_s, so as to approach the collapse regime of impact parameters bbcR2Gsb \simeq b_c \sim R\equiv 2G\sqrt{s}. Our basic tool is the extension of the recently proposed, unified form of radiation to the ACV reduced-action model and to its resummed-eikonal exchange. By superimposing that radiation all-over eikonal scattering, we are able to derive the corresponding (unitary) coherent-state operator. The resulting graviton spectrum, tuned on the gravitational radius RR, fully agrees with previous calculations for small angles Θs1\Theta_s\ll 1 but, for sizeable angles Θs(b)Θc=O(1)\Theta_s(b)\leq \Theta_c = O(1) acquires an exponential cutoff of the large ωR\omega R region, due to energy conservation, so as to emit a finite fraction of the total energy. In the approach-to-collapse regime of bbc+b\to b_c^+ we find a radiation enhancement due to large tidal forces, so that the whole energy is radiated off, with a large multiplicity NGs1\langle N \rangle\sim Gs \gg 1 and a well-defined frequency cutoff of order R1R^{-1}. The latter corresponds to the Hawking temperature for a black hole of mass notably smaller than s\sqrt{s}.Comment: 5 pages, 2 figures, talk presented at the European Physical Society Conference on High Energy Physics, 5-12 July, Venice, Ital

    Optical Recording of Neuronal Activity with a Genetically-Encoded Calcium Indicator in Anesthetized and Freely Moving Mice

    Get PDF
    Fluorescent calcium (Ca2+) indicator proteins (FCIPs) are promising tools for functional imaging of cellular activity in living animals. However, they have still not reached their full potential for in vivo imaging of neuronal activity due to limitations in expression levels, dynamic range, and sensitivity for reporting action potentials. Here, we report that viral expression of the ratiometric Ca2+ sensor yellow cameleon 3.60 (YC3.60) in pyramidal neurons of mouse barrel cortex enables in vivo measurement of neuronal activity with high dynamic range and sensitivity across multiple spatial scales. By combining juxtacellular recordings and two-photon imaging in vitro and in vivo, we demonstrate that YC3.60 can resolve single action potential (AP)-evoked Ca2+ transients and reliably reports bursts of APs with negligible saturation. Spontaneous and whisker-evoked Ca2+ transients were detected in individual apical dendrites and somata as well as in local neuronal populations. Moreover, bulk measurements using wide-field imaging or fiber-optics revealed sensory-evoked YC3.60 signals in large areas of the barrel field. Fiber-optic recordings in particular enabled measurements in awake, freely moving mice and revealed complex Ca2+ dynamics, possibly reflecting different behavior-related brain states. Viral expression of YC3.60 – in combination with various optical techniques – thus opens a multitude of opportunities for functional studies of the neural basis of animal behavior, from dendrites to the levels of local and large-scale neuronal populations

    Benchmarking whole exome sequencing in the German Network for Personalized Medicine

    Get PDF
    Introduction Whole Exome Sequencing (WES) has emerged as an efficient tool in clinical cancer diagnostics to broaden the scope from panel-based diagnostics to screening of all genes and enabling robust determination of complex biomarkers in a single analysis. Methods To assess concordance, six formalin-fixed paraffin-embedded (FFPE) tissue specimens and four commercial reference standards were analyzed by WES as matched tumor-normal DNA at 21 NGS centers in Germany, each employing local wet-lab and bioinformatics investigating somatic and germline variants, copy-number alteration (CNA), and different complex biomarkers. Somatic variant calling was performed in 494 diagnostically relevant cancer genes. In addition, all raw data were re-analyzed with a central bioinformatic pipeline to separate wet- and dry-lab variability. Results The mean positive percentage agreement (PPA) of somatic variant calling was 76% and positive predictive value (PPV) 89% compared a consensus list of variants found by at least five centers. Variant filtering was identified as the main cause for divergent variant calls. Adjusting filter criteria and re-analysis increased the PPA to 88% for all and 97% for clinically relevant variants. CNA calls were concordant for 82% of genomic regions. Calls of homologous recombination deficiency (HRD), tumor mutational burden (TMB), and microsatellite instability (MSI) status were concordant for 94%, 93%, and 93% respectively. Variability of CNAs and complex biomarkers did not increase considerably using the central pipeline and was hence attributed to wet-lab differences. Conclusion Continuous optimization of bioinformatic workflows and participating in round robin tests are recommend

    Flow Cytometry for Rapid Detection of Salmonella spp. in Seed Sprouts

    Full text link
    corecore