176 research outputs found

    Vacuum and Residual Gas Composition MEMS Sensor

    Get PDF
    AbstractThe paper presents a MEMS-type vacuum and residual gas composition sensor, which in contrast to the other miniature sensors, works in medium and high vacuum (10−5−10Pa). It operates on the principle of ionization of gases inside a silicon-glass microchamber. Pressure is estimated on the basis of the discharge current value, and gas composition − on the basis of spectra of the glowing gases, recorded by a miniature fiber spectrometer

    On polymorphic logical gates in sub-excitable chemical medium

    Get PDF
    In a sub-excitable light-sensitive Belousov-Zhabotinsky chemical medium an asymmetric disturbance causes the formation of localized traveling wave-fragments. Under the right conditions these wave-fragment can conserve their shape and velocity vectors for extended time periods. The size and life span of a fragment depend on the illumination level of the medium. When two or more wave-fragments collide they annihilate or merge into a new wave-fragment. In computer simulations based on the Oregonator model we demonstrate that the outcomes of inter-fragment collisions can be controlled by varying the illumination level applied to the medium. We interpret these wave-fragments as values of Boolean variables and design collision-based polymorphic logical gates. The gate implements operation XNOR for low illumination, and it acts as NOR gate for high illumination. As a NOR gate is a universal gate then we are able to demonstrate that a simulated light sensitive BZ medium exhibits computational universality

    Geometric Phases generated by the non-trivial spatial topology of static vector fields coupled to a neutral spin-endowed particle. Application to 171Yb atoms trapped in a 2D optical lattice

    Full text link
    We have constructed the geometric phases emerging from the non-trivial topology of a space-dependent magnetic field, interacting with the spin magnetic moment of a neutral particle. Our basic tool is the local unitary transformation which recasts the magnetic spin interaction under a diagonal form. Rewriting the kinetic term in the "rotated" frame requires the introduction of non-Abelian covariant derivatives, involving the gradients of the Euler angles which define the orientation of the local field. Within the rotated frame, we have built a perturbation scheme,assuming that the longitudinal non-Abelian field component dominates the transverse ones, to be evaluated to second-order. The geometry embedded in the longitudinal gauge vector field and its curl, the geometric magnetic field, is described by the associated Aharonov-Bohm phase. As an illustration, we study the physics of cold 171Yb atoms dressed by two sets of circularly polarized beams, forming square or triangular 2D optical lattices. The geometric field is computed explicitly from the Euler angles. The magnitude of 2nd-order corrections due to transverse fields can be reduced to the percent level by a choice of light intensity which keeps the dressed atom loss rate below 5 s^{-1}. An auxiliary optical lattice confines the atoms within 2D domains where the geometric field is pointing upward.Comment: 12 pages, 4 figures. Comments and one figure added about the effect of the additional scalar potential (sec. V.B). To be published in J. Phys. A:Math. Theo

    Chronic mild stress alters the somatostatin receptors in the rat brain

    Get PDF
    RATIONALE: The involvement of somatostatin (SST) and its receptors in the pathophysiology of depression and stress has been evidenced by numerous studies. OBJECTIVES: The purpose of the present study was to find whether chronic mild stress (CMS), an animal model of depression, affects the SST receptors in the rat brain and pituitary, as well as the level of SST in plasma. METHODS: In CMS model, rats were subjected to 2 weeks of stress and behaviorally characterized using the sucrose consumption test into differently reacting groups based on their response to stress, i.e., stress-reactive (anhedonic), stress-non-reactive (resilient), and invert-reactive rats (characterized by excessive sucrose intake). We measured specific binding of [(125)I]Tyr(3)-Octreotide, expression of mRNA encoding sst2R receptors in the rat brains, expression of SST and its receptors in rat pituitary, and the level of SST in the plasma. RESULTS: The obtained results show decreases in binding of [(125)I]Tyr(3)-Octreotide in most of rat brain regions upon CMS and no significant differences between three stressed groups of animals, except for significant up-regulation of sst2 receptor in medial habenula (MHb) in the stress-reactive group. In the same group of animals, significant increase in plasma SST level was observed. CONCLUSIONS: There are two particularly sensitive sites distinguishing the response to stress in CMS model. In the brain, it is MHb, while on the periphery this predictor is SST level in plasma. These changes may broaden an understanding of the mechanisms involved in the stress response and point to the intriguing role of MHb

    Constraints on a second planet in the WASP-3 system

    Get PDF
    There have been previous hints that the transiting planet WASP-3 b is accompanied by a second planet in a nearby orbit, based on small deviations from strict periodicity of the observed transits. Here we present 17 precise radial velocity measurements and 32 transit light curves that were acquired between 2009 and 2011. These data were used to refine the parameters of the host star and transiting planet. This has resulted in reduced uncertainties for the radii and masses of the star and planet. The radial-velocity data and the transit times show no evidence for an additional planet in the system. Therefore, we have determined the upper limit on the mass of any hypothetical second planet, as a function of its orbital period.Comment: Accepted for publication in The Astronomical Journa

    Optical Flux Lattices for Two-Photon Dressed States

    Full text link
    We describe a simple scheme by which "optical flux lattices" can be implemented in ultracold atomic gases using two-photon dressed states. This scheme can be applied, for example, to the ground state hyperfine levels of commonly used atomic species. The resulting flux lattices simulate a magnetic field with high mean flux density, and have low energy bands analogous to the lowest Landau level. We show that in practical cases the atomic motion significantly deviates from the adiabatic following of one dressed state, and that this can lead to significant interactions even for fermions occupying a single band. Our scheme allows experiments on cold atomic gases to explore strong correlation phenomena related to the fractional quantum Hall effect, both for fermions and bosons.Comment: 6 page

    Noisy frequency estimation with noisy probes

    Get PDF
    We consider frequency estimation in a noisy environment with noisy probes. This builds on previous studies, most of which assume that the initial probe state is pure, while the encoding process is noisy, or that the initial probe state is mixed, while the encoding process is noiseless. Our work is more representative of reality, where noise is unavoidable in both the initial state of the probe and the estimation process itself. We prepare the probe in a GHZ diagonal state, starting from n + 1 qubits in an arbitrary uncorrelated mixed state, and subject it to parameter encoding under dephasing noise. For this scheme, we derive a simple formula for the (quantum and classical) Fisher information, and show that quantum enhancements do not depend on the initial mixedness of the qubits. That is, we show that the so-called 'Zeno' scaling is attainable when the noise present in the encoding process is time inhomogeneous. This scaling does not depend on the mixedness of the initial probe state, and it is retained even for highly mixed states that can never be entangled. We then show that the sensitivity of the probe in our protocol is invariant under permutations of qubits, and monotonic in purity of the initial state of the probe. Finally, we discuss two limiting cases, where purity is either distributed evenly among the probes or concentrated in a single probe
    corecore