16 research outputs found

    Marine Biodiversity in the Caribbean: Regional Estimates and Distribution Patterns

    Get PDF
    This paper provides an analysis of the distribution patterns of marine biodiversity and summarizes the major activities of the Census of Marine Life program in the Caribbean region. The coastal Caribbean region is a large marine ecosystem (LME) characterized by coral reefs, mangroves, and seagrasses, but including other environments, such as sandy beaches and rocky shores. These tropical ecosystems incorporate a high diversity of associated flora and fauna, and the nations that border the Caribbean collectively encompass a major global marine biodiversity hot spot. We analyze the state of knowledge of marine biodiversity based on the geographic distribution of georeferenced species records and regional taxonomic lists. A total of 12,046 marine species are reported in this paper for the Caribbean region. These include representatives from 31 animal phyla, two plant phyla, one group of Chromista, and three groups of Protoctista. Sampling effort has been greatest in shallow, nearshore waters, where there is relatively good coverage of species records; offshore and deep environments have been less studied. Additionally, we found that the currently accepted classification of marine ecoregions of the Caribbean did not apply for the benthic distributions of five relatively well known taxonomic groups. Coastal species richness tends to concentrate along the Antillean arc (Cuba to the southernmost Antilles) and the northern coast of South America (Venezuela – Colombia), while no pattern can be observed in the deep sea with the available data. Several factors make it impossible to determine the extent to which these distribution patterns accurately reflect the true situation for marine biodiversity in general: (1) highly localized concentrations of collecting effort and a lack of collecting in many areas and ecosystems, (2) high variability among collecting methods, (3) limited taxonomic expertise for many groups, and (4) differing levels of activity in the study of different taxa

    The K153R variant in the myostatin gene and sarcopenia at the end of the human lifespan

    Get PDF
    We studied the A55T, E164K, I225T, K153R and P198A variants in the myostatin (GDF8) gene, muscle strength and mass, and physical function during daily living in 41 nonagenarians [33 women, age range, 90, 97]. No participant carried a mutant allele of the aforementioned variants, except three participants (all women), who carried the R allele of the K153R polymorphism, with one of them (woman aged 96 years) being homozygous. Overall, in KR women muscle phenotype values (1RM leg press and estimated muscle mass) were low-to-normal compared to the whole group (∌25th–50th percentile), and their functional capacity (Barthel and Tinetti tests) was normal. In the woman bearing the RR genotype, values of muscle mass and functional capacity were below the 25th percentile. She is the first RR Caucasian whose phenotype has been characterised specifically. In summary, heterozygosity for the GDF8 K153R polymorphism does not seem to exert a negative influence on the muscle phenotypes of women who are at the end of the human lifespan, yet homozygosity might do so. More research on larger cohorts of nonagenarians is needed to corroborate the present findings

    Accurate Identification of ALK Positive Lung Carcinoma Patients: Novel FDA-Cleared Automated Fluorescence In Situ Hybridization Scanning System and Ultrasensitive Immunohistochemistry

    Get PDF
    BackgroundBased on the excellent results of the clinical trials with ALK-inhibitors, the importance of accurately identifying ALK positive lung cancer has never been greater. However, there are increasing number of recent publications addressing discordances between FISH and IHC. The controversy is further fuelled by the different regulatory approvals. This situation prompted us to investigate two ALK IHC antibodies (using a novel ultrasensitive detection-amplification kit) and an automated ALK FISH scanning system (FDA-cleared) in a series of non-small cell lung cancer tumor samples.MethodsForty-seven ALK FISH-positive and 56 ALK FISH-negative NSCLC samples were studied. All specimens were screened for ALK expression by two IHC antibodies (clone 5A4 from Novocastra and clone D5F3 from Ventana) and for ALK rearrangement by FISH (Vysis ALK FISH break-apart kit), which was automatically captured and scored by using Bioview's automated scanning system.ResultsAll positive cases with the IHC antibodies were FISH-positive. There was only one IHC-negative case with both antibodies which showed a FISH-positive result. The overall sensitivity and specificity of the IHC in comparison with FISH were 98% and 100%, respectively.ConclusionsThe specificity of these ultrasensitive IHC assays may obviate the need for FISH confirmation in positive IHC cases. However, the likelihood of false negative IHC results strengthens the case for FISH testing, at least in some situations
    corecore