21 research outputs found

    Low skeletal muscle mass assessed directly from the 3rd cervical vertebra can predict pharyngocutaneous fistula risk after total laryngectomy in the male population

    Get PDF
    Altres ajuts: Acord transformatiu CRUE-CSICAltres ajuts: Open Access Funding provided by Universitat Autonoma de Barcelona. European Regional Development Fund (A Way to Build Europe).Purpose: Skeletal muscle mass (SMM) loss and sarcopenia have been identified as risk factors for postoperative complications. The aim of this study was to investigate the relationship between pharyngocutaneous fistula (PCF) formation after total laryngectomy (TL) and SMM assessed from a computed tomography image of the 3rd cervical vertebra (C3). Methods: Retrospective study of 86 male patients who underwent TL between 2013 and 2019 in a single institution. We excluded women from the analysis due to our limited sample. SMM was determined from cross-sectional muscle area (CSMA) measurement at C3 using the ImageJ software. Results were compared with those for the skeletal muscle mass index (SMMI) calculated from the estimated measure at 3rd lumbar vertebra (L3). Results: PCF formation occurred in 21/86 patients. According to the CSMA at a C3 cut-off of 35.5cm2, of 18 patients (20.9%) with low SMM, 9 developed PCFs (50.0%). Among patients with normal SMM (n = 68, 79.1%), 12 developed PCFs (17.6%). The CSMA at C3 was the only variable significantly associated with PCF risk, which was 4.7 times greater in patients with low SMM (p = 0.007). Sarcopenia was more frequent in underweight patients (p = 0.0001), patients undergoing extended surgeries (p = 0.003), or presenting preoperative anaemia (p = 0.009) or hypoalbuminemia (p = 0.027). Conclusion: Measuring the CSMA at C3 obtained results equivalent to those obtained by calculating the SMMI at L3, suggesting that direct SMM assessment from C3 is a useful approach to evaluating PCF formation risk after TL

    A visual quality control scale for clinical arterial spin labeling images

    Get PDF
    Background: Image-quality assessment is a fundamental step before c linical evaluation of mag netic resonance images. The aim of this study was to introduce a vi sual scoring system that provides a qual ity control standard for arterial spin labeling (ASL) and that can be applied to cerebral blood flow (CBF) maps, as well as to ancillary ASL images. Methods: The proposed image quality control (QC) system had two components: (1) contrast-based QC (cQC), describing the visual contrast between anatomical structures; a nd (2) artifact-based QC (aQC), evaluating image quality of theCBFmapforthepresenceofcommontypesofartifacts. Three raters evaluated cQC an d aQC for 158 quantitative signal targeting with alternating radiofrequency labelling o f arterial regions (QUASAR) ASL scans (CBF, T1 relaxation rate, arterial blood volume, and arterial transie nt time). Spearman correlation coefficient ( r ), intraclass correlation coefficients (ICC), and receiver operating characteristic analysis were used. Results: Intra/inter-rater agreement ranged from moderate to excellent; inter-rater ICC was 0.72 for cQC, 0.60 for aQC, and 0.74 for the combined QC (cQC + aQC). Intra-rater ICC was 0.90 for cQC; 0.80 for aQC, and 0.90 for the combined QC. Strong correlations were found between aQC and CBF maps quality ( r = 0.75), and between aQC and cQC ( r = 0.70). A QC score of 18 was optimal to discriminate between high and low quality clinical scans. Conclusions: The proposed QC system provided high reproducibility and a reliable threshold for discarding low quality scans. Future research should compare this v isualQCsystemwithanautomaticQCsystem

    A visual quality control scale for clinical arterial spin labeling images

    Get PDF
    BACKGROUND: Image-quality assessment is a fundamental step before clinical evaluation of magnetic resonance images. The aim of this study was to introduce a visual scoring system that provides a quality control standard for arterial spin labeling (ASL) and that can be applied to cerebral blood flow (CBF) maps, as well as to ancillary ASL images. METHODS: The proposed image quality control (QC) system had two components: (1) contrast-based QC (cQC), describing the visual contrast between anatomical structures; and (2) artifact-based QC (aQC), evaluating image quality of the CBF map for the presence of common types of artifacts. Three raters evaluated cQC and aQC for 158 quantitative signal targeting with alternating radiofrequency labelling of arterial regions (QUASAR) ASL scans (CBF, T1 relaxation rate, arterial blood volume, and arterial transient time). Spearman correlation coefficient (r), intraclass correlation coefficients (ICC), and receiver operating characteristic analysis were used. RESULTS: Intra/inter-rater agreement ranged from moderate to excellent; inter-rater ICC was 0.72 for cQC, 0.60 for aQC, and 0.74 for the combined QC (cQC + aQC). Intra-rater ICC was 0.90 for cQC; 0.80 for aQC, and 0.90 for the combined QC. Strong correlations were found between aQC and CBF maps quality (r = 0.75), and between aQC and cQC (r = 0.70). A QC score of 18 was optimal to discriminate between high and low quality clinical scans. CONCLUSIONS: The proposed QC system provided high reproducibility and a reliable threshold for discarding low quality scans. Future research should compare this visual QC system with an automatic QC system

    A visual quality control scale for clinical arterial spin labeling images

    No full text
    Image-quality assessment is a fundamental step before clinical evaluation of magnetic resonance images. The aim of this study was to introduce a visual scoring system that provides a quality control standard for arterial spin labeling (ASL) and that can be applied to cerebral blood flow (CBF) maps, as well as to ancillary ASL images. The proposed image quality control (QC) system had two components: (1) contrast-based QC (cQC), describing the visual contrast between anatomical structures; and (2) artifact-based QC (aQC), evaluating image quality of the CBF map for the presence of common types of artifacts. Three raters evaluated cQC and aQC for 158 quantitative signal targeting with alternating radiofrequency labelling of arterial regions (QUASAR) ASL scans (CBF, T1 relaxation rate, arterial blood volume, and arterial transient time). Spearman correlation coefficient (r), intraclass correlation coefficients (ICC), and receiver operating characteristic analysis were used. Intra/inter-rater agreement ranged from moderate to excellent; inter-rater ICC was 0.72 for cQC, 0.60 for aQC, and 0.74 for the combined QC (cQC + aQC). Intra-rater ICC was 0.90 for cQC; 0.80 for aQC, and 0.90 for the combined QC. Strong correlations were found between aQC and CBF maps quality (r = 0.75), and between aQC and cQC (r = 0.70). A QC score of 18 was optimal to discriminate between high and low quality clinical scans. The proposed QC system provided high reproducibility and a reliable threshold for discarding low quality scans. Future research should compare this visual QC system with an automatic QC system
    corecore