46 research outputs found

    Effect of yoga and swimming on body temperature of pregnant women

    Full text link
    Physical activity for pregnant women should be controlled and adapted in order to minimize the risk of loss of balance and fetal trauma (Davies, Wolfe, Mottola, y MacKinnon, 2003). Noninvasive technologies are required for understanding better the effects of physical activity on pregnant women. Infrared thermography allows, remotely, securely and without any contact, to measure and display accurate temperatures on the human skin

    sRNAbench and sRNAtoolbox 2022 update: accurate miRNA and sncRNA profiling for model and non-model organisms

    Get PDF
    The NCBI Sequence Read Archive currently hosts microRNA sequencing data for over 800 different species, evidencing the existence of a broad taxonomic distribution in the field of small RNA research. Simultaneously, the number of samples per miRNA-seq study continues to increase resulting in a vast amount of data that requires accurate, fast and user-friendly analysis methods. Since the previous release of sRNAtoolbox in 2019, 55 000 sRNAbench jobs have been submitted which has motivated many improvements in its usability and the scope of the underlying annotation database. With this update, users can upload an unlimited number of samples or import them from Google Drive, Dropbox or URLs. Micro- and small RNA profiling can now be carried out using high-confidence Metazoan and plant specific databases, MirGeneDB and PmiREN respectively, together with genome assemblies and libraries from 441 Ensembl species. The new results page includes straightforward sample annotation to allow downstream differential expression analysis with sRNAde. Unassigned reads can also be explored by means of a new tool that performs mapping to microbial references, which can reveal contamination events or biologically meaningful findings as we describe in the example. sRNAtoolbox is available at: https://arn.ugr.es/srnatoolbox/</a

    Changes in PRC1 activity during interphase modulate lineage transition in pluripotent cells

    Get PDF
    We thank the core facilities at GENYO for excellent technical support. We also thank the genomics unit at the CRG for assistance with RNA-seq and ChIP-seq experiments. The Landeira lab is supported by the Spanish ministry of science and innovation (PID2019-108108-100, EUR2021- 122005), the Andalusian regional government (PIER-0211-2019, PY20_00681) and the University of Granada (A-BIO-6-UGR20) grants. Research in the Klose lab is supported by the Wellcome Trust (209400/ Z/17/Z) and the European Research Council (681440). A.F. was sup- ported by a Sir Henry Wellcome Post-doctoral fellowship (110286/Z/15/ Z). Work in the Rada-Iglesias lab is funded by the Ministerio de Ciencia e Innovación, the Agencia Española de Investigación and the European Regional Development Fund (PGC2018-095301-B-I00 and RED2018- 102553-T); by the European Research Council (862022); and by the European Commission (H2020-MSCA-ITN-2019-860002).The online version contains supplementary material available at https://doi.org/10.1038/s41467-023-35859-9The potential of pluripotent cells to respond to developmental cues and trigger cell differentiation is enhanced during the G1 phase of the cell cycle, but the molecular mechanisms involved are poorly understood. Variations in polycomb activity during interphase progression have been hypothesized to regulate the cell-cycle-phase-dependent transcriptional activation of differentiation genes during lineage transition in pluripotent cells. Here, we show that recruitment of Polycomb Repressive Complex 1 (PRC1) and associated molecular functions, ubiquitination of H2AK119 and three-dimensional chromatin interactions, are enhanced during S and G2 phases compared to the G1 phase. In agreement with the accumulation of PRC1 at target promoters upon G1 phase exit, cells in S and G2 phases show firmer transcriptional repression of developmental regulator genes that is drastically perturbed upon genetic ablation of the PRC1 catalytic subunit RING1B. Importantly, depletion of RING1B during retinoic acid stimu- lation interferes with the preference of mouse embryonic stem cells (mESCs) to induce the transcriptional activation of differentiation genes in G1 phase. We propose that incremental enrolment of polycomb repressive activity during interphase progression reduces the tendency of cells to respond to develop- mental cues during S and G2 phases, facilitating activation of cell differentiation in the G1 phase of the pluripotent cell cycle.Ministry of Science and Innovation, Spain (MICINN) Spanish Government PID2019-108108-100, EUR2021-122005Andalusian regional government PIER-0211-2019, PY20_00681University of Granada A-BIO-6-UGR20Wellcome Trust 209400/Z/17/ZEuropean Research Council (ERC) European Commission 862022Wellcome Trust PGC2018-095301-B-I00Ministry of Science and Innovation, Spain (MICINN) Instituto de Salud Carlos III Spanish GovernmentEuropean Commission RED2018-102553-T, H2020-MSCA-ITN-2019-860002European Commission European Commission Joint Research Centre 681440Agencia Española de Investigación110286/Z/15/

    A comprehensive database for integrated analysis of omics data in autoimmune diseases

    Get PDF
    This work is partially funded by FEDER/Junta de Andalucia-Consejeria de Economia y Conocimiento (Grant CV20-36723), Consejeria de Salud (Grant PI-0173-2017) and by EU/EFPIA Innovative Medicines Initiative Joint Undertaking PRECISESADS (115565). JMM is partially funded by Ministerio de Economia, Industria y Competitividad. None of the funding bodies played any role in the design of the study and collection, analysis, and interpretation of data nor in writing the manuscript.Background: Autoimmune diseases are heterogeneous pathologies with difficult diagnosis and few therapeutic options. In the last decade, several omics studies have provided significant insights into the molecular mechanisms of these diseases. Nevertheless, data from different cohorts and pathologies are stored independently in public repositories and a unified resource is imperative to assist researchers in this field. Results: Here, we present Autoimmune Diseases Explorer (https:// adex. genyo. es), a database that integrates 82 curated transcriptomics and methylation studies covering 5609 samples for some of the most common autoimmune diseases. The database provides, in an easy-to-use environment, advanced data analysis and statistical methods for exploring omics datasets, including meta-analysis, differential expression or pathway analysis. Conclusions: This is the first omics database focused on autoimmune diseases. This resource incorporates homogeneously processed data to facilitate integrative analyses among studies.FEDER/Junta de Andalucia-Consejeria de Economia y Conocimiento CV20-36723Consejeria de Salud PI-0173-2017EU/EFPIA Innovative Medicines Initiative Joint Undertaking PRECISESADS 115565Ministerio de Economia, Industria y Competitivida

    Integrative Analysis Reveals a Molecular Stratification of Systemic Autoimmune Diseases

    Get PDF
    Objective Clinical heterogeneity, a hallmark of systemic autoimmune diseases, impedes early diagnosis and effective treatment, issues that may be addressed if patients could be classified into groups defined by molecular pattern. This study was undertaken to identify molecular clusters for reclassifying systemic autoimmune diseases independently of clinical diagnosis. Methods Unsupervised clustering of integrated whole blood transcriptome and methylome cross-sectional data on 955 patients with 7 systemic autoimmune diseases and 267 healthy controls was undertaken. In addition, an inception cohort was prospectively followed up for 6 or 14 months to validate the results and analyze whether or not cluster assignment changed over time. Results Four clusters were identified and validated. Three were pathologic, representing “inflammatory,” “lymphoid,” and “interferon” patterns. Each included all diagnoses and was defined by genetic, clinical, serologic, and cellular features. A fourth cluster with no specific molecular pattern was associated with low disease activity and included healthy controls. A longitudinal and independent inception cohort showed a relapse–remission pattern, where patients remained in their pathologic cluster, moving only to the healthy one, thus showing that the molecular clusters remained stable over time and that single pathogenic molecular signatures characterized each individual patient. Conclusion Patients with systemic autoimmune diseases can be jointly stratified into 3 stable disease clusters with specific molecular patterns differentiating different molecular disease mechanisms. These results have important implications for future clinical trials and the study of nonresponse to therapy, marking a paradigm shift in our view of systemic autoimmune diseases

    International Consensus Document on Obstructive Sleep Apnea

    Get PDF
    El objetivo principal de este documento internacional de consenso sobre apnea obstructiva del sueno es proporcionar unas directrices que permitan a los profesionales sanitarios tomar las mejores decisiones en la asistencia de los pacientes adultos con esta enfermedad según un resumen crítico de la literatura más actualizada. El grupo de trabajo de expertos se ha constituido principalmente por 17 sociedades científicas y 56 especialistas con amplia representación geográfica (con la participación de 4 sociedades internacionales), además de un metodólogo experto y un documentalista del Centro Cochrane Iberoamer icano. El documento consta de un manuscrito principal, con las novedades más relevantes del DIC, y una serie de manuscritos online que recogen las búsquedas bibliográficas sistemáticas de cada uno de los apartados del DIC. Este documento no cubre la edad pediátrica ni el manejo del paciente en ventilación mecánica crónica no invasiva (que se publicarán en sendos documentos de consenso aparte)

    Assessing the Impact of SARS-CoV-2 Lineages and Mutations on Patient Survival

    Get PDF
    Objectives: More than two years into the COVID-19 pandemic, SARS-CoV-2 still remains a global public health problem. Successive waves of infection have produced new SARS-CoV-2 variants with new mutations for which the impact on COVID-19 severity and patient survival is uncertain. Methods: A total of 764 SARS-CoV-2 genomes, sequenced from COVID-19 patients, hospitalized from 19th February 2020 to 30 April 2021, along with their clinical data, were used for survival analysis. Results: A significant association of B.1.1.7, the alpha lineage, with patient mortality (log hazard ratio (LHR) = 0.51, C.I. = [0.14,0.88]) was found upon adjustment by all the covariates known to affect COVID-19 prognosis. Moreover, survival analysis of mutations in the SARS-CoV-2 genome revealed 27 of them were significantly associated with higher mortality of patients. Most of these mutations were located in the genes coding for the S, ORF8, and N proteins. Conclusions: This study illustrates how a combination of genomic and clinical data can provide solid evidence for the impact of viral lineage on patient survival.This work was supported by Spanish Ministry of Science and Innovation (grant PID2020- 117979RB-I00), the Instituto de Salud Carlos III (ISCIII), co-funded with European Regional Development Funds (ERDF) (grant IMP/00019), and has also been funded by Consejería de Salud y Familias, Junta de Andalucía (grants COVID-0012-2020 and PS-2020-342) and the postdoctoral contract of Carlos Loucera (PAIDI2020- DOC_00350), co-funded by the European Social Fund (FSE) 2014-2020. ELIXIR-CONVERGE—H2020 (871075).Peer reviewe
    corecore