922 research outputs found

    Scaling law for the heating of solar coronal loops

    Get PDF
    We report preliminary results from a series of numerical simulations of the reduced magnetohydrodynamic equations, used to describe the dynamics of magnetic loops in active regions of the solar corona. A stationary velocity field is applied at the photospheric boundaries to imitate the driving action of granule motions. A turbulent stationary regime is reached, characterized by a broadband power spectrum Ekk3/2E_k\simeq k^{-3/2} and heating rate levels compatible with the heating requirements of active region loops. A dimensional analysis of the equations indicates that their solutions are determined by two dimensionless parameters: the Reynolds number and the ratio between the Alfven time and the photospheric turnover time. From a series of simulations for different values of this ratio, we determine how the heating rate scales with the physical parameters of the problem, which might be useful for an observational test of this model.Comment: 12 pages, 4 figures. Astrophysical Journal Letters (in press

    Hall-MHD small-scale dynamos

    Get PDF
    Much of the progress in our understanding of dynamo mechanisms has been made within the theoretical framework of magnetohydrodynamics (MHD). However, for sufficiently diffuse media, the Hall effect eventually becomes non-negligible. We present results from three dimensional simulations of the Hall-MHD equations subjected to random non-helical forcing. We study the role of the Hall effect in the dynamo efficiency for different values of the Hall parameter, using a pseudospectral code to achieve exponentially fast convergence. We also study energy transfer rates among spatial scales to determine the relative importance of the various nonlinear effects in the dynamo process and in the energy cascade. The Hall effect produces a reduction of the direct energy cascade at scales larger than the Hall scale, and therefore leads to smaller energy dissipation rates. Finally, we present results stemming from simulations at large magnetic Prandtl numbers, which is the relevant regime in hot and diffuse media such a the interstellar medium.Comment: 11 pages and 11 figure

    Energy spectrum of turbulent fluctuations in boundary driven reduced magnetohydrodynamics

    Full text link
    The nonlinear dynamics of a bundle of magnetic flux ropes driven by stationary fluid motions at their endpoints is studied, by performing numerical simulations of the magnetohydrodynamic (MHD) equations. The development of MHD turbulence is shown, where the system reaches a state that is characterized by the ratio between the Alfven time (the time for incompressible MHD waves to travel along the field lines) and the convective time scale of the driving motions. This ratio of time scales determines the energy spectra and the relaxation toward different regimes ranging from weak to strong turbulence. A connection is made with phenomenological theories for the energy spectra in MHD turbulence.Comment: Published in Physics of Plasma

    The malaria system microApp: A new, mobile device-based tool for malaria diagnosis

    Get PDF
    Background: Malaria is a public health problem that affects remote areas worldwide. Climate change has contributed to the problem by allowing for the survival of Anopheles in previously uninhabited areas. As such, several groups have made developing news systems for the automated diagnosis of malaria a priority. Objective: The objective of this study was to develop a new, automated, mobile device-based diagnostic system for malaria. The system uses Giemsa-stained peripheral blood samples combined with light microscopy to identify the Plasmodium falciparum species in the ring stage of development. Methods: The system uses image processing and artificial intelligence techniques as well as a known face detection algorithm to identify Plasmodium parasites. The algorithm is based on integral image and haar-like features concepts, and makes use of weak classifiers with adaptive boosting learning. The search scope of the learning algorithm is reduced in the preprocessing step by removing the background around blood cells. Results: As a proof of concept experiment, the tool was used on 555 malaria-positive and 777 malaria-negative previously-made slides. The accuracy of the system was, on average, 91%, meaning that for every 100 parasite-infected samples, 91 were identified correctly. Conclusions: Accessibility barriers of low-resource countries can be addressed with low-cost diagnostic tools. Our system, developed for mobile devices (mobile phones and tablets), addresses this by enabling access to health centers in remote communities, and importantly, not depending on extensive malaria expertise or expensive diagnostic detection equipment.Peer ReviewedPostprint (published version

    Composition of Kinetic Momenta: The U_q(sl(2)) case

    Full text link
    The tensor products of (restricted and unrestricted) finite dimensional irreducible representations of \uq are considered for qq a root of unity. They are decomposed into direct sums of irreducible and/or indecomposable representations.Comment: 27 pages, harvmac and tables macros needed, minor TeXnical revision to allow automatic TeXin

    Los depósitos eólicos asociados a la planicie aluvial del Río Desaguadero, Provincia de Mendoza, Argentina

    Get PDF
    Asociado a la margen derecha del río Desaguadero, colector principal de los cursos fluviales que drenan el piedemonte de la región andina central, y la zona de interacción con el piedemonte distal mendocino, se disponen destacadas acumulaciones arenosas eólicas que han recibido escasa atención hasta la fecha. Durante investigaciones recientes se ha determinado que estos depósitos se pueden diferenciar en relación a una variedad de geoformas eólicas tales como dunas lunetas, dunas longitudinales y mantos arenosos. En conjunto, estas unidades eólicas se disponen estratigráficamente sobre la Fm. Arco del Desaguadero, sucesión fluvio-lacustre desarrollada entre el Pleistoceno superior y el Holoceno superior. Los depósitos eólicos más antiguos forman dunas lunetas de hasta 14 m de altura, y se los asocia a la deflación de arenas desde las costas occidentales de lagunas temporales vinculadas a inundaciones del río Desaguadero. En base a dataciones numéricas realizadas sobre restos de conchillas de gasterópodos, se asignan estas dunas al Optimo Cálido Medieval. Posteriormente, durante el deterioro climático vinculado a la Pequeña Edad de Hielo, se desarrollaron dunas longitudinales y mantos arenosos con aportes sedimentarios provenientes de la llanura aluvial del río Desaguadero y de la removilización de arenas de las dunas lunetas previamente formadas. Se distinguen además dunas lunetas de menor envergadura asociadas a depresiones de deflación y encharcamiento temporal y extensos mantos arenosos de escaso espesor (menores en general a los 50 cm), generados por sedimentación eólica y posterior removilización por la escorrentía superficial, cuyo desarrollo se estima habrían comenzado también durante este último periodo. La disposición espacial de las dunas lunetas y las dunas longitudinales permiten establecer paleovientos provenientes del Este y Sureste

    Congenital and blood transfusion transmission of chagas disease: A framework using mathematical modeling

    Get PDF
    Chagas disease or American trypanosomiasis is an important health problem in Latin America. Due to the mobility of Latin American population around the world, countries without vector presence started to report disease cases. We developed a deterministic compartmental model in order to gain insights into the disease dynamics in a scenario without vector presence, considering congenital transmission and transmission by blood transfusion. The model was used to evaluate the epidemiological effect of control measures. It was applied to demographic data from Spain and sensitivity analysis was performed on model parameters associated with control strategies.Peer ReviewedPostprint (published version

    Transmission through a quantum dot molecule embedded in an Aharonov-Bohm interferometer

    Full text link
    We study theoretically the transmission through a quantum dot molecule embedded in the arms of an Aharonov-Bohm four quantum dot ring threaded by a magnetic flux. The tunable molecular coupling provides a transmission pathway between the interferometer arms in addition to those along the arms. From a decomposition of the transmission in terms of contributions from paths, we show that antiresonances in the transmission arise from the interference of the self-energy along different paths and that application of a magnetic flux can produce the suppression of such antiresonances. The occurrence of a period of twice the quantum of flux arises to the opening of transmission pathway through the dot molecule. Two different connections of the device to the leads are considered and their spectra of conductance are compared as a function of the tunable parameters of the model.Comment: 8 pages, 5 figure

    Hamiltonian Dynamics of Linearly Polarized Gowdy Models Coupled to Massless Scalar Fields

    Get PDF
    The purpose of this paper is to analyze in detail the Hamiltonian formulation for the compact Gowdy models coupled to massless scalar fields as a necessary first step towards their quantization. We will pay special attention to the coupling of matter and those features that arise for the three-handle and three-sphere topologies that are not present in the well studied three torus case -in particular the polar constraints that come from the regularity conditions on the metric. As a byproduct of our analysis we will get an alternative understanding, within the Hamiltonian framework, of the appearance of initial and final singularities for these models.Comment: Final version to appear in Classical and Quantum Gravit

    Close companions around young stars

    Get PDF
    Multiplicity is a fundamental property that is set early during stellar lifetimes, and it is a stringent probe of the physics of star formation. The distribution of close companions around young stars is still poorly constrained by observations. We present an analysis of stellar multiplicity derived from APOGEE-2 spectra obtained in targeted observations of nearby star-forming regions. This is the largest homogeneously observed sample of high-resolution spectra of young stars. We developed an autonomous method to identify double lined spectroscopic binaries (SB2s). Out of 5007 sources spanning the mass range of \sim0.05--1.5 \msun, we find 399 binaries, including both RV variables and SB2s. The mass ratio distribution of SB2s is consistent with a uniform for q0.95q0.95. The period distribution is consistent with what has been observed in close binaries (<10<10 AU) in the evolved populations. Three systems are found to have qq\sim0.1, with a companion located within the brown dwarf desert. There are not any strong trends in the multiplicity fraction (MF) as a function of cluster age from 1 to 100 Myr. There is a weak dependence on stellar density, with companions being most numerous at Σ30\Sigma_*\sim30 stars/pc2^{-2}, and decreasing in more diffuse regions. Finally, disk-bearing sources are deficient in SB2s (but not RV variables) by a factor of \sim2; this deficit is recovered by the systems without disks. This may indicate a quick dispersal of disk material in short-period equal mass systems that is less effective in binaries with lower qq.Comment: 25 pages, 20 figures. Accepted to A
    corecore