13 research outputs found

    Regulation by protein kinase-C of putative P-type Ca channels expressed in Xenopus oocytes from cerebellar mRNA

    Get PDF
    AbstractXenopus oocytes injected with rat cerebellar mRNA expressed functional voltage-dependent Ca channels detected as an inward Ba current (IBa). The pharmacological resistance to dihydropyridines and ω-conotoxin together with the blockade obtained with Agelenopsis aperta venom suggest that these channels could be somehow assimilated to P-type Ca channels. The precise nature of the transplanted Ca channels was assessed by hybrid-arrest experiments using a specific oligonucleotide antisense-derivated from the recently cloned α1-subunit of P channels (BI-1 clone). In addition, we demonstrate that exogenous Ca channel activity was enhanced by two different PKC activators (a phorbol ester and a structural analog to diacylglycerol). The general electrophysiological and pharmacological properties of the stimulated Ca channels remain unchanged. This potentiation induced by PKC activators is antagonized by a PKC inhibitor (staurosporine) and by a monoclonal antibody directed against PKC. It is concluded that P-type Ca channels are potentially regulated by PKC phosphorylation and the functional relevance of this intracellular pathway is discussed

    Magnetic and electric Purcell factor control through geometry optimization of high index dielectric nanostructures

    Full text link
    We design planar silicon antennas for controlling the emission rate of magnetic or electric dipolar emitters. Evolutionary algorithms coupled to the Green Dyadic Method lead to different optimized geometries which depend on the nature and orientation of the dipoles. We discuss the physical origin of the obtained configurations thanks to modal analysis but also emphasize the role of nanoscale design of the LDOS. We complete our study using finite element method and demonstrate an enhancement up to 2000 of the magnetic Purcell factor in europium ions. Our work brings together random optimizations to explore geometric parameters without constraint, a first order deterministic approach to understand the optimized designs and a modal analysis which clarifies the physical origin of the exaltation of the magnetic Purcell effect.Comment: 18 pages, 11 figures, research articl

    Coherent two-beam steering of delocalized nonlinear photoluminescence in a plasmon cavity

    No full text
    International audienceWe aim at controlling the spatial distribution of nonlinear photoluminescence in a shaped micrometer-size crystalline gold flake. Interestingly, the underlying surface plasmon modal landscape sustained by this mesoscopic structure can be advantageously used to generate nonlinear photoluminescence (nPL) in remote locations away from the excitation spot. By controlling the modal pattern, we show that the delocalized nonlinear photoluminescence intensity can be redistributed spatially. This is first accomplished by changing the polarization orientation of the pulsed laser excitation in order to select a subset of available surface plasmon modes within a continuum. We then propose a second approach to redistribute the nPL within the structure by implementing a phase control of the plasmon interference pattern arising from a coherent two-beam excitation. Control and engineering of the nonlinear photoluminescence spatial extension is a prerequisite for deploying the next generation of plasmonic-enabled integrated devices relying on hot carriers

    "pyGDM" - new functionalities and major improvements to the python toolkit for nano-optics full-field simulations

    No full text
    29 pages, 20 figuresInternational audiencepyGDM is a python toolkit for electro-dynamical simulations of individual nano-structures, based on the Green Dyadic Method (GDM). pyGDM uses the concept of a generalized propagator, which allows to solve cost-efficiently monochromatic problems with a large number of varying illumination conditions such as incident angle scans or focused beam raster-scan simulations. We provide an overview of new features added since the initial publication [Wiecha, Computer Physics Communications 233, pp.167-192 (2018)]. The updated version of pyGDM is implemented in pure python, removing the former dependency on fortran-based binaries. In the course of this rewrite , the toolkit's internal architecture has been completely redesigned to offer a much wider range of possibilities to the user such as the choice of the dyadic Green's functions describing the environment. A new class of dyads allows to perform 2D simulations of infinitely long nanostructures. While the Green's dyads in pyGDM are based on a quasistatic description for interfaces, we also provide as new external python package "pyGDM2_retard" a module with retarded Green's tensors for an environment with two interfaces. We have furthermore added functionalities for simulations using fast-electron excitation, namely electron energy loss spectroscopy and cathodoluminescence. Along with several further new tools and improvements, the update includes also the possibility to calculate the magnetic field and the magnetic LDOS inside nanostructures, field-gradients in-and outside a nanoparticle, optical forces or the chirality of nearfields. All new functionalities remain compatible with the evolutionary optimization module of pyGDM for nano-photonics inverse design

    The Pga59 cell wall protein is an amyloid forming protein involved in adhesion and biofilm establishment in the pathogenic yeast Candida albicans

    No full text
    International audienceThe human commensal fungus Candida albicans can attach to epithelia or indwelling medical devices and form biofilms, that are highly tolerant to antifungal drugs and can evade the immune response. The cell surface protein Pga59 has been shown to influence adhesion and biofilm formation. Here, we present evidence that Pga59 displays amyloid properties. Using electron microscopy, staining with an amyloid fibre-specific dye and X-ray diffraction experiments, we showed that the predicted amyloid-forming region of Pga59 is sufficient to build up an amyloid fibre in vitro and that recombinant Pga59 can also adopt a cross-β amyloid fibre architecture. Further, mutations impairing Pga59 amyloid assembly led to diminished adhesion to substrates and reduced biofilm production. Immunogold labelling on amyloid structures extracted from C. albicans revealed that Pga59 is used by the fungal cell to assemble amyloids within the cell wall in response to adhesion. Altogether, our results suggest that Pga59 amyloid properties are used by the fungal cell to mediate cell-substrate interactions and biofilm formation

    Extracellular Signal-Regulated Kinases 1 and 2 and TRPC1 Channels are Required for Calcium-Sensing Receptor-Stimulated MCF-7 Breast Cancer Cell Proliferation

    No full text
    International audienceThe calcium-sensing receptor (CaR), is a G protein-dependent receptor that responds to increments in extracellular Ca(2+) ([Ca(2+)](o)). We previously reported that an increase in [Ca(2+)](o) induced a release of intracellular calcium and Ca(2+) entry via store operated channels (SOCs). We also demonstrated that MCF-7 cells express Transient Receptor Potential canonical 1 (TRPC1) channels. Herein, we investigated CaR intracellular signaling pathways and examined the role of TRPC1 in CaR-induced cell proliferation, through the extracellular signal-regulated Kinases 1 & 2 (ERK1/2) pathways. Treatment by [Ca(2+)](o) increased both MCF-7 cell proliferation and TRPC1 expression. Both the [Ca(2+)](o) proliferative effect and TRPC1 protein levels were abolished by the ERK1/2 inhibitors. Moreover, [Ca(2+)](o) failed to increase cell proliferation either in the presence of CaR or TRPC1 siRNAs. Both [Ca(2+)](o) and the selective CaR activator spermine, elicited time and dose-dependent ERK1/2 phosphorylation. ERK1/2 phosphorylation was almost completely inhibited by treatment with the phospholipase C and the protein kinase C inhibitors. Treatment with 2-aminoethoxydiphenyl borate (2-APB), and SKF-96365 or by siTRPC1 diminished both [Ca(2+)](o)- and spermine-stimulated ERK1/2 phosphorylation. Moreover, down-regulation of TRPC1 by siRNA reduced the Ca(2+) entry induced by CaR activation. We conclude that the CaR activates ERK1/2 via a PLC/PKC-dependent pathway. Moreover, TRPC1 is required for the ERK1/2 phosphorylation, Ca(2+) entry and the CaR-proliferative effect

    Compact implementation of a 1-bit adder by coherent 2-beam excitation of a single plasmonic cavity

    No full text
    We demonstrate experimentally the dual beam optical drive of an interconnect-free 2-input, 2-output 1-bit adder implemented inside a single gold plasmonic cavity focused ion milled in an ultrathin single crystalline gold microplate. To obtain this result, we have set a coherent 2-beam excitation scheme up that allows to independently and arbitrarily set the intensity, polarization and relative phase shift of two femtosecond-pulsed laser spots. The spots are focused on any chosen location of the micrometer-sized plasmonic cavity. The nonlinear photoluminescence (NPL) response of the cavity encodes the Boolean output, while the Boolean inputs are borne by the linear polarization of the excitation. A generic map analysis tool is developed to pinpoint the realized Boolean functions and to assess their robustness. This tool is used to demonstrate the experimental implementation of the elusive XOR gate and its combination with an AND gate, in the same cavity, to perform the full 1-bit adder. The analysis of 160,000 instances of the 1-bit adder clearly shows the soundness of our approach and reveals some underlying mechanistic features of the remotely-generated NPL. These results establish the first practical step of a general approach to interconnect-free all-optical arithmetic and logic units
    corecore