5 research outputs found

    Wear in sheet metal forming

    No full text
    The general trend in the car body manufacturing industry is towards low-series production and reduction of press lubricants and car weight. The limited use of press lubricants, in combination with the introduction of high and ultra-high strength sheet materials, continuously increases the demands of the forming tools. To provide the means of forming new generations of sheet material, development of new tool materials with improved galling resistance is required, which may include tailored microstructures, introducing of specific(MC, M(C,N))carbides and nitrides, coatings and improved surface finish. In the present work, the wear mechanisms in real forming operations have been studied and emulated on a laboratory scale by developing a test equipment. The wear mechanisms identified in the real forming process, were distinguished into a sequence of events consisting of initial local adhesive wear of the sheets resulting in transfer of sheet material to the tool surfaces. Successive forming operations led to growth of the transfer layer and initiation of scratching of the sheets. Finally, scratching changed into severe adhesive wear, associated with gross macroscopic damage. The wear process was repeated in the laboratory test-equipment in sliding between several tool materials, ranging from cast iron to conventional ingot cast tool steels to advanced powder metallurgy tool steel, against dual-phase carbon steel sheets. By use of the test-equipment, selected tool materials were ranked regarding wear resistance in sliding against ferritic-martensitic steel sheets at different contact pressures. Wear in sheet metal forming is mainly determined by adhesion; initially between the tool and sheet surface interaction and subsequently, after initiation of material transfer, between a sheet to sheet contact. Atomic force microscopy force curves showed that adhesion is sensitive to both chemical composition and temperature. By alloying of iron with 18wt.% Cr and 8wt.% Ni, alloying in itself, or changes in crystal structure, led to an increase of 3 times in adhesion at room temperature. Hence, alloying may be assumed a promising way for control of adhesive properties. Additionally, frictional heating should be controlled to avoid high adhesion as, generally, adhesion was found to increase with increasing temperature for all investigated materials

    Wear mechanisms in sheet metal forming : Effects of tool microstructure, adhesion and temperature

    No full text
    The general trend in the car body manufacturing industry is towards low-series production and reduction of press lubricants and car weight. The limited use of lubricants, in combination with the introduction of high and ultrahigh-strength sheet materials, continuously increases the demands on the forming tools. The major cause for tool failure during the forming process is transfer and accumulation of sheet material on the tool surfaces, generally referred to as galling. The adhered material creates unstable frictional conditions and scratching of the tool/sheet interface. To provide the means of forming new generations of sheet materials, development of new tool materialswith improved galling resistance is required, which may include tailored microstructures introducing specific carbides and nitrides, coatings and improved surface finish. In the present work, the galling wear mechanisms in real forming operations have been studied and emulated at a laboratory scale by developing a test equipment. The wear mechanisms, identified in the real forming process, were distinguished into a sequence of events. At the initial stage, local adhesive wear of the sheets led to transfer of sheet material to the tool surfaces. Successive forming operations resulted in growth of the transfer layer with initiation of scratching of the sheets. Finally, scratching changed into severe adhesive wear, associated withgross macroscopic damage. The wear process was successfully repeated in the laboratory test equipment in sliding between several tool materials, ranging from cast iron and conventional ingot cast tool steels, to advanced powder metallurgy tool steel, sliding against medium and high-strength steel sheets. By use of the test equipment, selected tool materials were ranked regarding galling resistance. The controlling mechanism for galling in sheet metal forming is adhesion. The initial sheet material transfer was found to occur, preferably, to the metallic matrix of the tool steels. Hence, the carbides in the particular steels appeared less prone to adhesion as compared to the metallic matrix. Therefore, an improved galling resistance was observed for a tool steel comprising a high amount of small homogeneously distributed carbides offering a low-strength interface to the transferred sheet material.Further, atomic force microscopy showed that nanoscale adhesion was influenced by temperature, with increasing adhesion as temperature increases. A similar dependence was observed at the macroscale where increasing surface temperature led to initiation of severe adhesive wear. The results were in good agreement to the nano scale observations and temperature-induced high adhesion was suggested as a possible mechanism

    Införandet av Computer Based Mathematics (CBM) i ingenjörsutbildningar

    No full text
    CBM är ett koncept som innebär användning av datorn och matematikprogramvaror som huvudverktyg i under-visningen. Istället för att som i traditionell undervisning kombinera handräkning med datorlabbar ligger tyngdpunkten i en CBM-kurs på datoriserade beräkningsverktyg. Härav för-flyttas fokus mot konceptförtåelse, modellering och tolkning av resultat. Vid Högskolan i Halmstad och Karlstads Universitet finns idag flera kurser baserat på CBM. Kvantitativt har införandet lett till ökad studentgenomströmning samtidigt som innehållet i kurser har ökat. Kvalitativa markörer, såsom studentens egen uppfattning om konceptuell förståelse och nyfikenhet inom ämnet, har baserat på kursvärderingar också ökat.

    Atomistic insights on the wear/friction behavior of nanocrystalline ferrite during nanoscratching as revealed by molecular dynamics

    No full text
    Using embedded atom method potential, extensive large-scale molecular dynamics (MD) simulations of nanoindentation/nanoscratching of nanocrystalline (nc) iron have been carried out to explore grain size dependence of wear response. MD results show no clear dependence of the frictional and normal forces on the grain size, and the single-crystal (sc) iron has higher frictional and normal force compared to nc-samples. For all samples, the dislocation- mediated mechanism is the primary cause of plastic deformation in both nanoindentation/nanoscratch. However, secondary cooperative mechanisms are varied significantly according to grain size. Pileup formation was observed in the front of and sideways of the tool, and they exhibit strong dependence on grain orientation rather than grain size. Tip size has significant impact on nanoscratch characteristics; both frictional and normal forces monotonically increase as tip radii increase, while the friction coefficient value drops by about 38%. Additionally, the increase in scratch depth leads to an increase in frictional and normal forces as well as friction coefficient. To elucidate the relevance of indentation/scratch results with mechanical properties, uniaxial tensile test was performed for nc-samples, and the result indicates the existence of both the regular and inverse Hall-Petch relations at critical grain size of 110.9 angstrom. The present results suggest that indentation/scratch hardness has no apparent correlation with the mechanical properties of the substrate, whereas the plastic deformation has
    corecore