57 research outputs found
Permafrost biases climate signals in δ18Otree-ring series from a sub-alpine tree stand in Val Bever/Switzerland
During recent decades, stable oxygen isotopes derived from tree-ring cellulose (δ18OTRC) have been frequently utilised as the baseline for palaeoclimatic reconstructions. In this context, numerous studies take advantage of the high sensitivity of trees close to their ecological distribution limit (high elevation or high latitudes). However, this increases the chance that indirect climatic forces such as cold ground induced by permafrost can distort the climate-proxy relationship. In this study, a tree stand of sub-alpine larch trees (Larix decidua Mill.) located in an inner alpine dry valley (Val Bever), Switzerland, was analysed for its δ18OTRC variations during the last 180 years. A total of eight L. decidua trees were analysed on an individual base, half of which are located on verified sporadic permafrost lenses approximately 500 m below the expected lower limit of discontinuous permafrost. The derived isotope time series are strongly dependent on variations in summer temperature, precipitation and large-scale circulation patterns (geopotential height fields). The results demonstrate that trees growing outside of the permafrost distribution provide a significantly stronger and more consistent climate-proxy relationship over time than permafrost-affected tree stands. The climate sensitivity of permafrost-affected trees is analogical to the permafrost-free tree stands (positive and negative correlations with temperature and precipitation, respectively) but attenuated partly leading to a complete loss of significance. In particular, decadal summer temperature variations are well reflected in δ18OTRC from permafrost-free sites (r = 0.62, p 0.05). Since both tree stands are located just a few meters away from one another and are subject to the same climatic influences, discrepancies in the isotope time series can only be attributed to variations in the trees’ source water that constraints the climatic fingerprints on δ18OTRC. If the two individual time series are merged to one local mean chronology, the climatic sensitivity reflects an intermediate between the permafrost-free and –affected δ18OTRC time series. It can be deduced, that a significant loss of information on past climate variations arises by simply averaging both tree stands without prior knowledge of differing subsurface conditions
Glacier–permafrost relations in a high-mountain environment: 5 decades of kinematic monitoring at the Gruben site, Swiss Alps
Digitized aerial images were used to monitor the evolution of perennially frozen debris and polythermal glacier ice at the intensely investigated Gruben site in the Swiss Alps over a period of about 50 years. The photogrammetric analysis allowed for a compilation of detailed spatio-temporal information on flow velocities and thickness changes. In
addition, high-resolution GNSS (global navigation satellite system) and ground surface temperature measurements were included in the analysis to provide insight into short-term changes. Over time, extremely contrasting developments and landform responses are documented. Viscous flow within the warming and already near-temperate rock glacier permafrost continued at a constant average but seasonally variable speed of typically decimetres per
year, with average surface lowering limited to centimetres to a few decimetres per year. This constant flow causes the continued advance of the characteristic convex, lava-stream-like rock glacier with its oversteepened fronts. Thawing rates of ice-rich perennially frozen ground to strong climate forcing are very low (centimetres per year) and the dynamic response strongly delayed (timescale of decades to centuries). The adjacent cold debris-covered glacier tongue remained an essentially concave landform with diffuse margins, predominantly chaotic surface structure, intermediate thickness losses (decimetres per year), and clear signs of down-wasting and decreasing flow velocity. The former contact zone between the cold glacier margin and the upper part of the rock glacier with disappearing remains of buried glacier ice embedded on top of frozen debris exhibits complex phenomena of thermokarst in massive ice and backflow towards the topographic depression produced by the retreating glacier tongue. As is typical for glaciers in the Alps, the largely debris-free glacier part shows a rapid response (timescale of years) to strong climatic forcing with spectacular retreat (>10 m a−1) and mass loss (up to >1 m w.e. specific mass loss per year). The system of periglacial lakes shows a correspondingly dynamic evolution and had to be controlled by engineering work for hazard protection
Democratizing glacier data – maturity of worldwide datasets and future ambitions
The creation and curation of environmental data present numerous challenges and rewards. In this study, we reflect on the increasing amount of freely available glacier data (inventories and changes), as well as on related demands by data providers, data users, and data repositories in-between. The amount of glacier data has increased significantly over the last two decades as remote sensing techniques have improved and free data access is much more common. The portfolio of observed parameters has increased as well, which presents new challenges for international data centers, and fosters new expectations from users. We focus here on the service of the Global Terrestrial Network for Glaciers (GTN-G) as the central organization for standardized data on glacier distribution and change. Within GTN-G, different glacier datasets are consolidated under one umbrella, and the glaciological community supports this service by actively contributing their datasets and by providing strategic guidance via an Advisory Board. To assess each GTN-G dataset, we present a maturity matrix and summarize achievements, challenges, and ambitions. The challenges and ambitions in the democratization of glacier data are discussed in more detail, as they are key to providing an even better service for glacier data in the future. Most challenges can only be overcome in a financially secure setting for data services and with the help of international standardization as, for example, provided by the CoreTrustSeal. Therefore, dedicated financial support for and organizational long-term commitment to certified data repositories build the basis for the successful democratization of data. In the field of glacier data, this balancing act has so far been successfully achieved through joint collaboration between data repository institutions, data providers, and data users. However, we also note an unequal allotment of funds for data creation and projects using the data, and data curation. Considering the importance of glacier data to answering numerous key societal questions (from local and regional water availability to global sea-level rise), this imbalance needs to be adjusted. In order to guarantee the continuation and success of GTN-G in the future, regular evaluations are required and adaptation measures have to be implemented
Historically unprecedented global glacier decline in the early 21st century
Observations show that glaciers around the world are in retreat and losing mass. Internationally coordinated for over a century, glacier monitoring activities provide an unprecedented dataset of glacier observations from ground, air and space. Glacier studies generally select specific parts of these datasets to obtain optimal assessments of the mass-balance data relating to the impact that glaciers exercise on global sea-level fluctuations or on regional runoff. In this study we provide an overview and analysis of the main observational datasets compiled by the World Glacier Monitoring Service (WGMS). The dataset on glacier front variations (⇠42 000 since 1600) delivers clear evidence that centennial glacier retreat is a global phenomenon. Intermittent readvance periods at regional and decadal scale are normally restricted to a subsample of glaciers and have not come close to achieving the maximum positions of the Little Ice Age (or Holocene). Glaciological and geodetic observations (⇠5200 since 1850) show that the rates of early 21st-century mass loss are without precedent on a global scale, at least for the time period observed and probably also for recorded history, as indicated also in reconstructions from written and illustrated documents. This strong imbalance implies that glaciers in many regions will very likely suffer further ice loss, even if climate remains stable
Global glacier mass changes and their contributions to sea-level rise from 1961 to 2016
International audienc
Acceleration and interannual variability of creep rates in mountain permafrost landforms (rock glacier velocities) in the European Alps in 1995–2022
Cryospheric long-term timeseries get increasingly important. To document climate-related effects on long-term viscous creep of ice-rich mountain permafrost, we investigated timeseries (1995–2022) of geodetically-derived Rock Glacier Velocity (RGV), i.e. spatially averaged interannual velocity timeseries related to a rock glacier (RG) unit or part of it. We considered 50 RGV from 43 RGs spatially covering the entire European Alps. Eight of these RGs are destabilized. Results show that RGV are distinctly variable ranging from 0.04 to 6.23 m a. Acceleration and deceleration at many RGs are highly correlated with similar behaviour over 2.5 decades for 15 timeseries. In addition to a general long-term, warming-induced trend of increasing velocities, three main phases of distinct acceleration (2000–2004, 2008–2015, 2018–2020), interrupted by deceleration or steady state conditions, were identified. The evolution is attributed to climate forcing and underlines the significance of RGV as a product of the Essential Climate Variable (ECV) permafrost. We show that RGV data are valuable as climate indicators, but such data should always be assessed critically considering changing local factors (geomorphic, thermal, hydrologic) and monitoring approaches. To extract a climate signal, larger RGV ensembles should be analysed. Criteria for selecting new RGV-sites are proposed
In situ observations of the Swiss periglacial environment using GNSS instruments
Monitoring of the periglacial environment is relevant for many disciplines including glaciology, natural hazard management, geomorphology, and geodesy. Since October 2022, Rock Glacier Velocity (RGV) is a new Essential Climate Variable (ECV) product within the Global Climate Observing System (GCOS). However, geodetic surveys at high elevation remain very challenging due to environmental and logistical reasons. During the past decades, the introduction of low-cost global navigation satellite system (GNSS) technologies has allowed us to increase the accuracy and frequency of the observations. Today, permanent GNSS instruments enable continuous surface displacement observations at millimetre accuracy with a sub-daily resolution. In this paper, we describe decennial time series of GNSS observables as well as accompanying meteorological data. The observations comprise 54 positions located on different periglacial landforms (rock glaciers, landslides, and steep rock walls) at altitudes ranging from 2304 to 4003 ma.s.l. and spread across the Swiss Alps. The primary data products consist of raw GNSS observables in RINEX format, inclinometers, and weather station data. Additionally, cleaned and aggregated time series of the primary data products are provided, including daily GNSS positions derived through two independent processing tool chains. The observations documented here extend beyond the dataset presented in the paper and are currently continued with the intention of long-term monitoring. An annual update of the dataset, available at https://doi.org/10.1594/PANGAEA.948334 (Beutel et al., 2022), is planned. With its future continuation, the dataset holds potential for advancing fundamental process understanding and for the development of applied methods in support of e.g. natural hazard management
Sediment transfer rates of two active rockglaciers in the Swiss Alps
High mountain geosystems are characterized by an extensive transfer of mass and energy, reflected in its geomorphological processes shaping the landscape. Within the periglacial belt, rockglaciers represent important sediment storages and transport components. In this study, sediment transfer rates are quantified for two rockglaciers with different characteristics, based on a multi-method approach combining geomorphological mapping, DTM analyses, digital photogrammetry and geodetic survey. For the first time different velocity values, resulting from a kinematic monitoring over two decades, are included. Due to the different characteristics of the landforms (especially thickness and horizontal velocity), a wide range of sediment transfer rates results from this study: between 0.24 and 1.1 million t/a, with the maximum value for a rockglacier with a relatively small mass but high deformation rates
- …