11 research outputs found

    Gene expression of lactobacilli in murine forestomach biofilms

    No full text
    Lactobacilli populate the gastro-intestinal tract of vertebrates, and are used in food fermentations and as probiotics. Lactobacilli are also major constituents of stable biofilms in the forestomach of rodents. In order to investigate the lifestyle of these biofilm lactobacilli in C57BL/6 mice, we applied metatranscriptomics to analyse gene expression (assessed by mRNA) and community composition (assessed by rRNA). Lactobacillales were the major biofilm inhabitants (62–82% of rRNA reads), followed by Clostridiales (8–31% of rRNA reads). To identify mRNA transcripts specific for the forestomach, we compared forestomach and hindgut metatranscriptomes. Gene expression of the biofilm microbiota was characterized by high abundance of transcripts related to glucose and maltose utilization, peptide degradation, and amino acid transport, indicating their major catabolic and anabolic pathways. The microbiota transcribed genes encoding pathways enhancing oxidative stress (glutathione synthesis) and acid tolerance. Various pathways, including metabolite formation (urea degradation, arginine pathway, γ-aminobutyrate) and cell wall modification (DltA, cyclopropane-fatty-acyl-phospholipid synthase), contributed to acid tolerance, as judged from the transcript profile. In addition, the biofilm microbiota expressed numerous genes encoding extracellular proteins involved in adhesion and/or biofilm formation (e.g. MucBP, glycosyl hydrolase families 68 and 70). This study shed light on the lifestyle and specific adaptations of lactobacilli in the murine forestomach that might also be relevant for lactobacilli biofilms in other vertebrates, including humans

    Effect of bacteriocin-producing lactobacilli on the survival of Escherichia coli and Listeria in a dynamic model of the stomach and the small intestine

    No full text
    The survival of Lactobacillus curvatus LTH 1174 (bac+) and (bac-) in combination with Escherichia coli LTH 1600 or Listeria innocua DSM20649 during transit through a dynamic model of the human stomach and small intestine (GIT model) was studied. Furthermore, we determined the digestion of curvacin A during gastro-intestinal transit and the effect of this bacteriocin on microbial survival. Lb. curvatus is rapidly killed in the gastric compartment at pH strongly agitated > agitated. Lactic acid and curvacin A enhanced the lethal effect of low pH on E. coli. Accordingly, cells from strongly agitated cultures were killed faster in the gastric compartment of the GIT model than those from agitated cultures, and inactivation was accelerated in the presence of curvacin A. E. coli tolerated the bile concentrations prevailing in the small intestinal compartments of the model. The survival of Listeria innocua in the GIT model was comparable to that of Lb. curvatus. The curvacin A produced by Lb. curvatus LTH1174 (bac+) killed > 90% of the L. innocua within 10 min after mixing of the cultures. Curvacin A was not degraded in the the gastric compartment, and could be detected in the ileal compartment during the first 180 min upon addition of the meal

    Influence of pH on the formation of Glucan by Lactobacillus reuteri TMW 1.106 exerting a protective function against extreme pH values.

    No full text
    Lactobacillus reuteri TMW 1.106, a dominant type II sourdough bacterium, produces glucan from sucrose in vitro and in situ. Exopolysaccharides positively affect the texture and mouth feel of foods and their in situ production in fermented foods could be an alternative to the addition of hydrocolloids from plants or non-GRAS microorganisms. The aim of this study was to elucidate a probable function of the EPS for the bacterium. Lb. reuteri TMW 1.106 harbors two glucosyltransferases, Gtf106A and Gtf106B and produces a dextran. Gtf106B exhibited hydrolysis but no transferase activity. Enzymatic production of dextran with the heterologously expressed, N-terminally truncated N Gtf106A was highest at a pH of 4.0, whereas dextran formation in pH static fermentations was optimal between pH 4.7 and 5.4. The dextran synthesised at these pH values had the highest molecular mass (1.2 107) and 15% -(1-4) linkages. A protective effect of this EPS on Lb. reuteri TMW 1.106 against low pH, explaining the low pH-production maximum, could be demonstrated through the delay of cell death

    Questioning the fetal microbiome illustrates pitfalls of low-biomass microbial studies

    No full text
    Whether the human fetus and the prenatal intrauterine environment (amniotic fluid and placenta) are stably colonized by microbial communities in a healthy pregnancy remains a subject of debate. Here we evaluate recent studies that characterized microbial populations in human fetuses from the perspectives of reproductive biology, microbial ecology, bioinformatics, immunology, clinical microbiology and gnotobiology, and assess possible mechanisms by which the fetus might interact with microorganisms. Our analysis indicates that the detected microbial signals are likely the result of contamination during the clinical procedures to obtain fetal samples or during DNA extraction and DNA sequencing. Furthermore, the existence of live and replicating microbial populations in healthy fetal tissues is not compatible with fundamental concepts of immunology, clinical microbiology and the derivation of germ-free mammals. These conclusions are important to our understanding of human immune development and illustrate common pitfalls in the microbial analyses of many other low-biomass environments. The pursuit of a fetal microbiome serves as a cautionary example of the challenges of sequence-based microbiome studies when biomass is low or absent, and emphasizes the need for a trans-disciplinary approach that goes beyond contamination controls by also incorporating biological, ecological and mechanistic concepts

    Starter and protective cultures

    No full text

    Microorganisms in Fermented Foods and Beverages

    No full text
    corecore