5 research outputs found

    Honey Bee Colonies Remote Monitoring System

    Get PDF
    Bees are very important for terrestrial ecosystems and, above all, for the subsistence of many crops, due to their ability to pollinate flowers. Currently, the honey bee populations are decreasing due to colony collapse disorder (CCD). The reasons for CCD are not fully known, and as a result, it is essential to obtain all possible information on the environmental conditions surrounding the beehives. On the other hand, it is important to carry out such information gathering as non-intrusively as possible to avoid modifying the bees’ work conditions and to obtain more reliable data. We designed a wireless-sensor networks meet these requirements. We designed a remote monitoring system (called WBee) based on a hierarchical three-level model formed by the wireless node, a local data server, and a cloud data server. WBee is a low-cost, fully scalable, easily deployable system with regard to the number and types of sensors and the number of hives and their geographical distribution. WBee saves the data in each of the levels if there are failures in communication. In addition, the nodes include a backup battery, which allows for further data acquisition and storage in the event of a power outage. Unlike other systems that monitor a single point of a hive, the system we present monitors and stores the temperature and relative humidity of the beehive in three different spots. Additionally, the hive is continuously weighed on a weighing scale. Real-time weight measurement is an innovation in wireless beehive—monitoring systems. We designed an adaptation board to facilitate the connection of the sensors to the node. Through the Internet, researchers and beekeepers can access the cloud data server to find out the condition of their hives in real time

    Regulation of Microclimatic Conditions inside Native Beehives and Its Relationship with Climate in Southern Spain

    Get PDF
    In this study, the Wbee Sensor System was used to record data from 10 Iberian beehives for two years in southern Spain. These data were used to identify potential conditioning climatic factors of the internal regulatory behavior of the hive and its weight. Categorical principal components analysis (CATPCA) was used to determine the minimum number of those factors able to capture the maximum percentage of variability in the data recorded. Then, categorical regression (CATREG) was used to select the factors that were linearly related to hive internal humidity, temperature and weight to issue predictive regression equations in Iberian bees. Average relative humidity values of 51.7% ± 10.4 and 54.2% ± 11.7 were reported for humidity in the brood nest and in the food area, while average temperatures were 34.3 °C ± 1.5 in the brood nest and 29.9 °C ± 5.8 in the food area. Average beehive weight was 38.2 kg ± 13.6. Some of our data, especially those related to humidity, contrast with previously published results for other studies about bees from Central and northern Europe. Conclusively, certain combinations of climatic factors may condition within hive humidity, temperature and hive weight. Southern Iberian honeybees’ brood nest humidity regulatory capacity could be lower than brood nest thermoregulatory capacity, maintaining values close to 34 °C, even in dry conditions

    Experimental Evaluation of Perfluorocarbon Aerosol Generation with Two Novel Nebulizer Prototypes

    Get PDF
    The potential of non-invasive ventilation procedures and new minimally invasive techniques has resulted in the research of alternative approaches as the aerosolization for the treatment of respiratory distress syndrome (RDS). The aim of this work was to design two nebulizer prototypes and to evaluate them studying the particle size distribution of the inhaled droplets generated with distilled water and two perfluorocarbons (PFCs). Different experiments were performed with driving pressures of 1⁻3 bar for each compound. An Aerodynamic Particle Sizer was used to measure the aerodynamic diameter (Da), the mass median aerodynamic diameter (MMAD) and the geometric standard deviation (GSD). The results showed that both prototypes produced heterodisperse aerosols with Da mean values in all cases below 5 m. The initial experiments with distilled water showed MMAD values lower than 9 m and up to 15 m with prototype 1 and prototype 2, respectively. Regarding the PFCs, relatively uniform MMAD values close to 12 m were achieved. The air delivery with outer lumens of prototype 1 presented more suitable mass distribution for the generation and delivery of a uniform aerosol than the two half-circular ring geometry proposed in the prototype 2.Funding: This work has been supported by Consolidated Groups from the Basque Government and Fundation VITAL Fundazioa

    Experimental and Numerical Modeling of Aerosol Delivery for Preterm Infants

    Get PDF
    Respiratory distress syndrome (RDS) represents one of the major causes of mortality among preterm infants, and the best approach to treat it is an open research issue. The use of perfluorocarbons (PFC) along with non-invasive respiratory support techniques has proven the usefulness of PFC as a complementary substance to achieve a more homogeneous surfactant distribution. The aim of this work was to study the inhaled particles generated by means of an intracorporeal inhalation catheter, evaluating the size and mass distribution of different PFC aerosols. In this article, we discuss different experiments with the PFC perfluorodecalin (PFD) and FC75 with a driving pressure of 4-5 bar, evaluating properties such as the aerodynamic diameter (Da), since its value is directly linked to particle deposition in the lung. Furthermore, we develop a numerical model with computational fluid dynamics (CFD) techniques. The computational results showed an accurate prediction of the airflow axial velocity at different downstream positions when compared with the data gathered from the real experiments. The numerical validation of the cumulative mass distribution for PFD particles also confirmed a closer match with the experimental data measured at the optimal distance of 60 mm from the catheter tip. In the case of FC75, the cumulative mass fraction for particles above 10 mu m was considerable higher with a driving pressure of 5 bar. These numerical models could be a helpful tool to assist parametric studies of new non-invasive devices for the treatment of RDS in preterm infants.Consolidated Groups from the Basque Government supported this work. Technical and human support provided by IZO-SGI, SGIker (UPV/EHU) is gratefully acknowledged
    corecore