58 research outputs found

    Synergistic effect of antimetabolic and chemotherapy drugs in triple-negative breast cancer

    Full text link
    The triple-negative breast cancer (TNBC) subtype comprises approximately 15% of all breast cancers and is associated with poor long-term outcomes. Classical chemotherapy remains the standard of treatment, with toxicity and resistance being major limitations. TNBC is a high metabolic group, and antimetabolic drugs are effective in inhibiting TNBC cell growth. We analyzed the combined effect of chemotherapy and antimetabolic drug combinations in MDA-MB-231, MDA-MB-468 and HCC1143 human TNBC cell lines. Cells were treated with each drug or with drug combinations at a range of concentrations to establish the half-maximal inhibitory concentrations (IC50). The dose-effects of each drug or drug combination were calculated, and the synergistic or antagonistic effects of drug combinations were defined. Chemotherapy and antimetabolic drugs exhibited growth inhibitory effects on TNBC cell lines. Antimetabolic drugs targeting the glycolysis pathway had a synergistic effect with chemotherapy drugs, and antiglycolysis drug combinations also had a synergistic effect. The use of these drug combinations could lead to new therapeutic strategies that reduce chemotherapy drug doses, decreasing their toxic effect, or that maintain the doses but enhance their efficacy by their synergistic effect with other drugsMaría I. Lumbreras-Herrera and Andrea Zapater-Moros are supported by Consejería de Educación e Investigación de la Comunidad de Madrid (IND2018/BMD-9262). Elena López-Camacho is supported by the Spanish Economy and Competitiveness Ministry (PTQ2018–009760). This work is supported by an unrestricted grant from Roch

    An 8-gene qRT-PCR-based gene expression score that has prognostic value in early breast cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Gene expression profiling may improve prognostic accuracy in patients with early breast cancer. Our objective was to demonstrate that it is possible to develop a simple molecular signature to predict distant relapse.</p> <p>Methods</p> <p>We included 153 patients with stage I-II hormonal receptor-positive breast cancer. RNA was isolated from formalin-fixed paraffin-embedded samples and qRT-PCR amplification of 83 genes was performed with gene expression assays. The genes we analyzed were those included in the 70-Gene Signature, the Recurrence Score and the Two-Gene Index. The association among gene expression, clinical variables and distant metastasis-free survival was analyzed using Cox regression models.</p> <p>Results</p> <p>An 8-gene prognostic score was defined. Distant metastasis-free survival at 5 years was 97% for patients defined as low-risk by the prognostic score versus 60% for patients defined as high-risk. The 8-gene score remained a significant factor in multivariate analysis and its performance was similar to that of two validated gene profiles: the 70-Gene Signature and the Recurrence Score. The validity of the signature was verified in independent cohorts obtained from the GEO database.</p> <p>Conclusions</p> <p>This study identifies a simple gene expression score that complements histopathological prognostic factors in breast cancer, and can be determined in paraffin-embedded samples.</p

    Utility of CYP2D6 copy number variants as prognostic biomarker in localized anal squamous cell carcinoma

    Full text link
    Background: Anal squamous cell carcinoma (ASCC) is an infrequent tumor whose treatment has not changed since the 1970s. The aim of this study is the identification of biomarkers allowing personalized treatments and improvement of therapeutic outcomes. Methods: Forty-six paraffin tumor samples from ASCC patients were analyzed by whole-exome sequencing. Copy number variants (CNVs) were identified and their relation to disease-free survival (DFS) was studied and validated in an independent retrospective cohort of 101 ASCC patients from the Multidisciplinary Spanish Digestive Cancer Group (GEMCAD). GEMCAD cohort proteomics allowed assessing the biological features of these tumors. Results: On the discovery cohort, the median age was 61 years old, 50% were males, stages I/II/III: 3 (7%)/16 (35%)/27 (58%), respectively, median DFS was 33 months, and overall survival was 45 months. Twenty-nine genes whose duplication was related to DFS were identified. The most representative was duplications of the CYP2D locus, including CYP2D6, CYP2D7P, and CYP2D8P genes. Patients with CYP2D6 CNV had worse DFS at 5 years than those with two CYP2D6 copies (21% vs. 84%; p <.0002, hazard ratio [HR], 5.8; 95% confidence interval [CI], 2.7–24.9). In the GEMCAD validation cohort, patients with CYP2D6 CNV also had worse DFS at 5 years (56% vs. 87%; p =.02, HR = 3.6; 95% CI, 1.1–5.7). Mitochondria and mitochondrial cell-cycle proteins were overexpressed in patients with CYP2D6 CNV. Conclusions: Tumor CYP2D6 CNV identified patients with a significantly worse DFS at 5 years among localized ASCC patients treated with 5-fluorouracil, mitomycin C, and radiotherapy. Proteomics pointed out mitochondria and mitochondrial cell-cycle genes as possible therapeutic targets for these high-risk patients. Plain Language Summary: Anal squamous cell carcinoma is an infrequent tumor whose treatment has not been changed since the 1970s. However, disease-free survival in late staged tumors is between 40% and 70%. The presence of an alteration in the number of copies of CYP2D6 gene is a biomarker of worse disease-free survival. The analysis of the proteins in these high-risk patients pointed out mitochondria and mitochondrial cell-cycle genes as possible therapeutic targets. Therefore, the determination of the number of copies of CYP2D6 allows the identification of anal squamous carcinoma patients with a high-risk of relapse that could be redirected to a clinical trial. Additionally, this study may be useful to suggest new treatment strategies to increase current therapy efficacyIdiPAZ, Grant/Award Number: Jesús Antolín Garciarena Fellowship; European Proteomics Infrastructure Consortium, Grant/Award Number: 823839, Horizon 2020 Programm

    PTRF/Cavin-1 and MIF Proteins Are Identified as Non-Small Cell Lung Cancer Biomarkers by Label-Free Proteomics

    Get PDF
    With the completion of the human genome sequence, biomedical sciences have entered in the “omics” era, mainly due to high-throughput genomics techniques and the recent application of mass spectrometry to proteomics analyses. However, there is still a time lag between these technological advances and their application in the clinical setting. Our work is designed to build bridges between high-performance proteomics and clinical routine. Protein extracts were obtained from fresh frozen normal lung and non-small cell lung cancer samples. We applied a phosphopeptide enrichment followed by LC-MS/MS. Subsequent label-free quantification and bioinformatics analyses were performed. We assessed protein patterns on these samples, showing dozens of differential markers between normal and tumor tissue. Gene ontology and interactome analyses identified signaling pathways altered on tumor tissue. We have identified two proteins, PTRF/cavin-1 and MIF, which are differentially expressed between normal lung and non-small cell lung cancer. These potential biomarkers were validated using western blot and immunohistochemistry. The application of discovery-based proteomics analyses in clinical samples allowed us to identify new potential biomarkers and therapeutic targets in non-small cell lung cancer

    MALDI Profiling of Human Lung Cancer Subtypes

    Get PDF
    Proteomics is expected to play a key role in cancer biomarker discovery. Although it has become feasible to rapidly analyze proteins from crude cell extracts using mass spectrometry, complex sample composition hampers this type of measurement. Therefore, for effective proteome analysis, it becomes critical to enrich samples for the analytes of interest. Despite that one-third of the proteins in eukaryotic cells are thought to be phosphorylated at some point in their life cycle, only a low percentage of intracellular proteins is phosphorylated at a given time.In this work, we have applied chromatographic phosphopeptide enrichment techniques to reduce the complexity of human clinical samples. A novel method for high-throughput peptide profiling of human tumor samples, using Parallel IMAC and MALDI-TOF MS, is described. We have applied this methodology to analyze human normal and cancer lung samples in the search for new biomarkers. Using a highly reproducible spectral processing algorithm to produce peptide mass profiles with minimal variability across the samples, lineal discriminant-based and decision tree–based classification models were generated. These models can distinguish normal from tumor samples, as well as differentiate the various non–small cell lung cancer histological subtypes.A novel, optimized sample preparation method and a careful data acquisition strategy is described for high-throughput peptide profiling of small amounts of human normal lung and lung cancer samples. We show that the appropriate combination of peptide expression values is able to discriminate normal lung from non-small cell lung cancer samples and among different histological subtypes. Our study does emphasize the great potential of proteomics in the molecular characterization of cancer

    Identificación de marcadores moleculares en cáncer no microcítico de pulmón mediante espectometría de masas: una aproximación fosfoproteómica

    Full text link
    Tesis doctoral inédita realizada en la Universidad Autónoma de Madrid, Facultad de Medicina, Departamento de Bioquímica. Fecha de lectura: 14 de Mayo de 2010

    Description of the genetic variants identified in a cohort of patients diagnosed with localized anal squamous cell carcinoma and treated with panitumumab

    Get PDF
    Càncer; Genètica mèdica; Marcadors predictiusCáncer; Genética Médica; Marcadores predictivosCancer; Medical genetics; Predictive markersSquamous cell carcinoma is the most frequent histologic type of anal carcinoma. The standard of care since the 1970s has been a combination of 5-fluorouracil, mitomycin C, and radiotherapy. This treatment is very effective in T1/T2 tumors (achieving complete regression in 80–90% of tumors). However, in T3/T4 tumors, the 3-year relapse free survival rate is only 50%. The VITAL trial aimed to assess the efficacy and safety of panitumumab in combination with this standard treatment. In this study, 27 paraffin-embedded samples from the VITAL trial and 18 samples from patients from daily clinical practice were analyzed by whole-exome sequencing and the influence of the presence of genetic variants in the response to panitumumab was studied. Having a moderate- or high-impact genetic variant in PIK3CA seemed to be related to the response to panitumumab. Furthermore, copy number variants in FGFR3, GRB2 and JAK1 were also related to the response to panitumumab. These genetic alterations have also been studied in the cohort of patients from daily clinical practice (not treated with panitumumab) and they did not have a predictive value. Therefore, in this study, a collection of genetic alterations related to the response with panitumumab was described. These results could be useful for patient stratification in new anti-EGFR clinical trials.LT-F is supported by the Spanish Economy and Competitiveness Ministry (DI-15-07614)

    High‐throughput phosphoproteomics from formalin‐fixed, paraffin‐embedded tissues

    No full text
    Liquid chromatography coupled with tandem mass spectrometry–based high-throughput proteomics allows detection and characterization of thousands of peptides and their post-translational modifications in a single sample. Protein phosphorylation affects most eukaryotic cellular processes, and its deregulation is considered a hallmark of cancer and other diseases. High-throughput phosphoproteomics may enable monitoring of altered signaling pathways as a means of stratifying tumors and facilitating the discovery of new drugs. Unfortunately, the development of molecular tests for clinical use is constrained by the limited availability of fresh frozen, clinically annotated samples, and protocols that allow the use of human archival formalin-fixed, paraffin-embedded samples are required. The protocols in this article describe a global procedure for evaluating hundreds of protein phosphorylation sites in protein extracts obtained from formalin-fixed, paraffin-embedded tissues

    Isotopologue multipoint calibration for proteomics biomarker quantification in clinical practice

    No full text
    Targeted proteomics has become the method of choice for biomarker validation in human biopsies due to its high sensitivity, reproducibility, accuracy, and precision. However, for targeted proteomics to be transferred to clinical routine there is the need to reduce its complexity, make its procedures simpler, increase its throughput, and improve its analytical performance. Here we present the Isotopologue Multipoint Calibration (ImCal) quantification strategy, which uses a mix of isotopologue peptides to generate internal multipoint calibration curves for each individual sample and to accurately quantify biomarker peptides in clinical applications without the need of expert supervision. ImCal relies on the use of five different isotopically-labelled peptides of different nominal mass mixed at different concentrations to be used as an internal calibration curve for each endogenous peptide. The use of internal multipoint calibration curves is well-suited for the generation of ready-to-use biomarker kits for clinical applications as it is compatible with both high- and low-resolution mass spectrometers and different levels of endogenous peptide, it eliminates the need for blank matrixes required in external curves, it allows the evaluation of matrix effects and the valid quantification range in each individual sample, and it does not require expert adjustment. We used the ImCal method to quantify HER2 in 35 breast cancer formalin-fixed paraffin-embedded patient samples, revealing a high degree of heterogeneity among patients, which contrasts with the homogeneous immunohistochemistry patient classification. Our work illustrates how an improvement of mass spectrometry methods for biomarker quantification can provide fine-grain patient stratification, and thus better disease diagnostic and prognosis.The CRG/UPF Proteomics Unit is part of the Spanish Infrastructure for Omics Technologies (ICTS OmicsTech) and it is a member of the ProteoRed PRB3 consortium which is supported by Grant PT17/0019/0021 of the PE I+D+i 2013-2016 from the Instituto de Salud Carlos III (ISCIII) and ERDF. We acknowledge support from the Spanish Ministry of Science, Innovation and Universities, “Centro de Excelencia Severo Ochoa 2013–2017”, Grant SEV-2012-0208, and “Secretaria d’Universitats i Recerca del Departament d’Economia i Coneixement de la Generalitat de Catalunya” Grant (2017SGR595). This project has also received funding from the European Union’s Horizon 2020 research and innovation program under Grant Agreement No. 823839 (EPIC-XS). L.T.-F. is supported by Spanish Economy and Competitiveness Ministry (Grant DI-15-07614). The Molecular Oncology and Pathology Lab is supported by Instituto de Salud Carlos III, Spanish Economy and Competitiveness Ministry, Spain, and cofunded by the FEDER program, “Una forma de hacer Europa” (Grant PI15/01310)

    Genetic profile and functional proteomics of anal squamous cell carcinoma: proposal for a molecular classification

    Get PDF
    Carcinoma anal de cèl·lules escamoses; Biologia molecular; ProteòmicaAnal squamous cell carcinoma; Molecular biology; ProteomicsCarcinoma anal de células escamosas; Biología molecular; ProteómicaAnal squamous cell carcinoma is a rare tumor. Chemo-radiotherapy yields a 50% 3-year relapse-free survival rate in advanced anal cancer, so improved predictive markers and therapeutic options are needed. High-throughput proteomics and whole-exome sequencing were performed in 46 paraffin samples from anal squamous cell carcinoma patients. Hierarchical clustering was used to establish groups de novo. Then, probabilistic graphical models were used to study the differences between groups of patients at the biological process level. A molecular classification into two groups of patients was established, one group with increased expression of proteins related to adhesion, T lymphocytes and glycolysis; and the other group with increased expression of proteins related to translation and ribosomes. The functional analysis by the probabilistic graphical model showed that these two groups presented differences in metabolism, mitochondria, translation, splicing and adhesion processes. Additionally, these groups showed different frequencies of genetic variants in some genes, such as ATM, SLFN11 and DST. Finally, genetic and proteomic characteristics of these groups suggested the use of some possible targeted therapies, such as PARP inhibitors or immunotherapy.This study was supported by the Instituto de Salud Carlos III, Spanish Economy and Competitiveness Ministry, Spain and co-sponsored by the FEDER program, “Una forma de hacer Europa” (PI15/01310), a Roche Farma grant, Cátedra UAM-Amgen and a grant of Grupo Español Multidisciplinar en Cáncer Digestivo (GEMCAD1403). LT-F is supported by the Spanish Economy and Competitiveness Ministry (DI-15–07614). GP-V is supported by the Consejería de Educación, Juventud y Deporte of Comunidad de Madrid (IND2017/BMD7783); AZ-M is supported by Jesús Antolín Garciarena fellowship from IdiPAZ. The authors have declared a conflict of interest. JAFV and AG-P are shareholders in Biomedica Molecular Medicine SL. LT-F and GP-V are employees of Biomedica Molecular Medicine SL. JC has received honoraria for scientific consulting (as speaker and advisory roles) from Novartis, Pfizer, Ipsen, Exelixis, Bayer, Eisai, Advanced Accelerator Applications, Amgen, Sanofi and Merck Serono and research support from Eisai, Novartis, Ipsen, Astrazeneca, Pfizer and Advanced Accelerator Applications. IG has received honoraria and/or travel expenses from Roche, Sanofi, Merck, Servier, Amgen and Sirtflex, and for advisory role from Merck and Sanofi. JF has received consulting and advisory honoraria from Amgen, Ipsen, Eissai, Merck, Roche and Novartis; research funding from Merck, and travel and accommodation expenses from Amgen and Servier. The other authors declare no conflicts of interest
    corecore